[1] 李德仁, 邵振峰, 于文博, 等. 基于时空位置大数据的公共疫情防控服务让城市更智慧[J]. 武汉大学学报(信息科学版), 2020, 45(4):475-487, 556. LI Deren, SHAO Zhenfeng, YU Wenbo, et al. Public epidemic prevention and control services based on big data of spatio-temporal location make cities more smart[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4):475-487, 556. [2] 刘经南, 詹骄, 郭迟,等.智能高精地图数据逻辑结构与关键技术[J]. 测绘学报, 2019, 48(8):939-953. DOI:10.11947/j.AGCS.2019.20190125. LIU Jingnan, ZHAN Jiao, GUO Chi, et al. Data logic structure and key technologies on intelligent high-precision map[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8):939-953. DOI:10.11947/j.AGCS.2019.20190125. [3] 李德仁, 姚远, 邵振峰. 智慧城市中的大数据[J]. 武汉大学学报(信息科学版), 2014, 39(6):631-640. LI Deren, YAO Yuan, SHAO Zhenfeng. Big data in smart city[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):631-640. [4] 杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019, 48(12):1575-1585. DOI:10.11947/j.AGCS.2019.20190465. YANG Bisheng, DONG Zhen. Progress and perspective of point cloud intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1575-1585. DOI:10.11947/j.AGCS.2019.20190465. [5] ZHAO Bufan, HUA Xianghong, YU Kegen, et al. Indoor point cloud segmentation using iterative Gaussian mapping and improved model fitting[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11):7890-7907. [6] ZHANG Liangpei, ZHANG Yun, CHEN Zhenzhong, et al. Splitting and merging based multi-model fitting for point cloud segmentation[J]. Journal of Geodesy and Geoinformation Science, 2020, 2(2):78-89. [7] 蒋腾平, 王永君, 张林淇, 等.融合CNN和MRF的激光点云层次化语义分割方法[J]. 测绘学报, 2021, 50(2):215-225. DOI:10.11947/j.AGCS.2021.20220095. JIANG Tengping, WANG Yongjun, ZHANG Linqi, et al. A LiDAR point cloud hierarchical semantic segmentation method combining CNN and MRF[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2):215-225. DOI:10.11947/j.AGCS.2021.20220095. [8] LI S Z. Markov random field modeling in image analysis[M]. London:Springer Science & Business Media, 2009. [9] LI Yan, DAI Jicheng, TAN Junxiang, et al. Global fine registration of point cloud in LiDAR SLAM based on pose graph[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2):26-35. [10] ANAND A, KOPPULA H S, JOACHIMS T, et al. Contextually guided semantic labeling and search for 3D point clouds[J]. International Journal of Robotics Research, 2011, 32(1):19-34. [11] MUNOZ D, VANDAPEL N, HEBERT M. Onboard contextual classification of 3D point clouds with learned high-order Markov random fields[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan:IEEE, 2009. [12] LI Zhuqiang, ZHANG Liqiang, ZHONG Ruofei, et al. Classification of urban point clouds:a robust supervised approach with automatically generating training data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 10(3):1207-1220. [13] WANG Yan, JI Rongrong, CHANG Shifu. Label propagation from imagenet to 3D point clouds[C]//Proceedings of 2013 IEEE conference on computer vision and pattern recognition. Portland, OR, USA:IEEE, 2013:3135-3142. [14] FLOROS G, LEIBE B. Joint 2D-3D temporally consistent semantic segmentation of street scenes[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2012:2823-2830. [15] FU Yifan, ZHU Xingquan, LI Bin. A survey on instance selection for active learning[J]. Knowledge and Information Systems, 2013, 35(2):249-283. [16] WANG Yu, MENDEZ A E M, CARTWRIGHT M, et al. Active learning for efficient audio annotation and classification with a large amount of unlabeled data[C]//Proceedings of 2019 ICASSP International Conference on Acoustics, Speech and Signal Processing. Brighton, UK:IEEE, 2019:880-884. [17] THOMAS H, QI C R, DESCHAUD J E, et al. Kpconv:flexible and deformable convolution for point clouds[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, South Korea:IEEE, 2019:6411-6420. [18] YANG L, MACEACHREN A M, MITRA P, et al. Visually-enabled active deep learning for (geo) text and image classification:a review[J]. ISPRS International Journal of Geo-Information, 2018, 7(2):65. [19] VEZHNEVETS A, BUHMANN J M, FERRARI V. Active learning for semantic segmentation with expected change[C]//Proceedings of 2012 IEEE conference on computer vision and pattern recognition. Providence, RI, USA:IEEE, 2012:3162-3169. [20] LIN Y, VOSSELMAN G, CAO Y, et al. Active and incremental learning for semantic ALS point cloud segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169:73-92. [21] 罗欢. 高分辨率激光扫描点云语义标注研究[D].厦门:厦门大学,2017. LUO Huan. Research on semantic labeling of high-resolution laser scanning point clouds[D]. Xiamen:Xiamen University,2017. [22] LUO H, WANG C, Wen C, et al. Semantic labeling of mobile LiDAR point clouds via active learning and higher order MRF[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7):3631-3644. [23] ADAMS A, GELFAND N, DOLSON J, et al. Gaussian kd-trees for fast high-dimensional filtering[M]. New York:ACM press. 2009:1-12. [24] WEINMANN M, JUTZI B, HINZ S, et al. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105:286-304. [25] MALLET C, BRETAR F, ROUX M, et al. Relevance assessment of full-waveform LiDAR data for urban area classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6):S71-S84. [26] TAO Wuyong, HUA Xianghong, WANG Ruisheng, et al. Quintuple local coordinate images for local shape description[J]. Photogrammetric Engineering & Remote Sensing, 2020, 86(2):121-132. [27] TAO Wuyong, HUA Xianghong, YU Kegen, et al. A pipeline for 3D object recognition based on local shape description in cluttered scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(1):801-816. [28] WEINMANN M, JUTZI B, MALLET C. Feature relevance assessment for the semantic interpretation of 3D point cloud data[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, 5(W2):1. [29] GUYON I, WESTON J, BARNHILL S, et al. Gene selection for cancer classification using support vector machines[J]. Machine learning, 2002, 46(1):389-422. [30] GR MPING U. Variable importance assessment in regression:linear regression versus random forest[J]. The American Statistician, 2009, 63(4):308-319. [31] CARDOSO T N C, SILVA R M, CANTUO S, et al. Ranked batch-mode active learning[J]. Information Sciences, 2017, 379:313-337. [32] LEWIS D D, GALE W A. A sequential algorithm for training text classifiers[C]//Proceedings of 1994 SIGIR. London, UK:Springer,1994:3-12. [33] BRANDT J. Transform coding for fast approximate nearest neighbor search in high dimensions[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA:IEEE, 2010:1815-1822. [34] XU S, WANG R, WANG H, et al. An optimal hierarchical clustering approach to mobile LiDAR point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(7):2765-2776. [35] HACKEL T, SAVINOV N, LADICKY L, et al. Semantic 3D.net:a new large-scale point cloud classification benchmark[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017(IV-1/W1):91-98. [36] PATRA S, BRUZZONE L. A batch-mode active learning technique based on multiple uncertainty for SVM classifier[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 9(3):497-501. |