[1] COHEN B. Urbanization in developing countries:current trends, future projections, and key challenges for sustainability[J]. Technology in Society, 2006, 28(1-2):63-80. [2] BRABEC E, SCHULTE S, RICHARDS P L. Impervious surfaces and water quality:a review of current literature and its implications for watershed planning[J]. Journal of Planning Literature, 2002, 16(4):499-514. [3] FEI Weicheng, ZHAO Shuqing. Urban land expansion in China's six megacities from 1978 to 2015[J]. Science of the Total Environment, 2019, 664:60-71. [4] OPOKU A. Biodiversity and the built environment:implications for the sustainable development goals (SDGs)[J]. Resources, Conservation and Recycling, 2019, 141:1-7. [5] GORELICK N, HANCHER M, DIXON M, et al. Google earth engine:planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27. [6] TAMIMINIA H, SALEHI B, MAHDIANPARI M, et al. Google Earth Engine for geo-big data applications:a meta-analysis and systematic review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164:152-170. [7] CHEN Jun, CHEN Jin, LIAO Anping, et al. Global land cover mapping at 30 m resolution:a POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103:7-27. [8] PESARESI M, EHRLICH D, FERRI S, et al. Operating procedure for the production of the global human settlement layer from Landsat data of the epochs 1975, 1990, 2000, and 2014[J]. Publications Office of the European Union, 2016:1-62. [9] ZHANG Xiao, LIU Liangyun, WU Changshan, et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform[J]. Earth System Science Data, 2020, 12(3):1625-1648. [10] GONG Peng, WANG Jie, YU Le, et al. Finer resolution observation and monitoring of global land cover:first mapping results with Landsat TM and ETM+ data[J]. International Journal of Remote Sensing, 2013, 34(7):2607-2654. [11] TU Ying, LANG Wei, YU Le, et al. Improved mapping results of 10 m resolution land cover classification in Guangdong, China using multisource remote sensing data with Google Earth Engine[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:5384-5397. [12] XU Rudong, LIU Jin, XU Jianhui. Extraction of high-precision urban impervious surfaces from Sentinel-2 multispectral imagery via modified linear spectral mixture analysis[J]. Sensors (Basel, Switzerland), 2018, 18(9):2873. [13] SUN Genyun, CHEN Xiaolin, JIA Xiuping, et al. Combinational build-up index (CBI) for effective impervious surface mapping in urban areas[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(5):2081-2092. [14] 李益敏, 刘心知, 吴博闻, 等. 基于遥感技术的不透水面动态变化研究:以瑞丽市为例[J]. 云南大学学报(自然科学版), 2021, 43(4):716-724. LI Yimin, LIU Xinzhi, WU Bowen, et al. Dynamic change of impervious surface based on remote sensing technology:a case study of Ruili City[J]. Journal of Yunnan University (Natural Sciences Edition), 2021, 43(4):716-724. [15] 李方刚, 李二珠, 阿里木·赛买提, 等. 融合多源时序遥感数据大尺度不透水面覆盖率估算[J]. 遥感学报, 2020, 24(10):1243-1254. LI Fanggang, LI Erzhu, SAMAT Alim, et al. Estimation of large-scale impervious surface percentage by fusion of multi-source time series remote sensing data[J]. Journal of Remote Sensing, 2020, 24(10):1243-1254. [16] SUN Zhongchang, WANG Cuizhen, GUO Huadong, et al. A modified normalized difference impervious surface index (MNDISI) for automatic urban mapping from landsat imagery[J]. Remote Sensing, 2017, 9(9):942. [17] 徐涵秋, 王美雅. 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016, 20(5):1270-1289. XU Hanqiu, WANG Meiya. Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016, 20(5):1270-1289. [18] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe,NV,USA:ACM, 2012:1097-1105. [19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large scale image recognition[C]//Proceedings of 2015 International Conference on Learning Representations. San Diego,CA,USA:ICLR, 2015:463-476. [20] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas, NV, USA:IEEE, 2016:770-778. [21] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018(1):1-15. [22] 赵泉华, 谢凯浪, 王光辉, 等. 全卷积网络和条件随机场相结合的全极化SAR土地覆盖分类[J]. 测绘学报, 2020, 49(1):65-78. DOI:10.11947/j.AGCS.2020.20190038. ZHAO Quanhua, XIE Kailang, WANG Guanghui, et al. Land cover classification of polarimetric SAR with fully convolution network and conditional random field[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1):65-78. DOI:10.11947/j.AGCS.2020.20190038. [23] 张继贤, 顾海燕, 杨懿, 等. 高分辨率遥感影像智能解译研究进展与趋势[J]. 遥感学报, 2021, 25(11):2198-2210. ZHANG Jixian, GU Haiyan, YANG Yi, et al. Research progress and trend of high-resolution remote sensing imagery intelligent interpretation[J]. National Remote Sensing Bulletin, 2021, 25(11):2198-2210. [24] HUANG Fenghua, YU Ying, FENG Tinghao. Automatic extraction of impervious surfaces from high resolution remote sensing images based on deep learning[J]. Journal of Visual Communication and Image Representation, 2019, 58:453-461. [25] ZHANG Ce, PAN Xin, LI Huapeng, et al. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140:133-144. [26] TONG Xinyi, XIA Guisong, LU Qikai, et al. Land-cover classification with high-resolution remote sensing images using transferable deep models[J]. Remote Sensing of Environment, 2020, 237:111322. [27] DONG Runmin, LI Cong, FU Haohuan, et al. Improving 3-m resolution land cover mapping through efficient learning from an imperfect 10-m resolution map[J]. Remote Sensing, 2020, 12(9):1418. [28] GONG Peng, LIU Han, ZHANG Meinan, et al. Stable classification with limited sample:transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6):370-373. [29] CORBANE C, SYRRIS V, SABO F, et al. Convolutional neural networks for global human settlements mapping from Sentinel-2 satellite imagery[J]. Neural Computing and Applications, 2021, 33(12):6697-6720. [30] 林创. 面向遥感图像分类的卷积神经网络抗噪优化方法[D]. 深圳:中国科学院大学(中国科学院深圳先进技术研究院), 2021. LIN Chuang. Noise-resistant optimization method of convolutional neural network for remote sensing image classification[D]. Shenzhen:Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2021. [31] FENG Shanshan, FAN Fenglei. A hierarchical extraction method of impervious surface based on NDVI thresholding integrated with multispectral and high-resolution remote sensing imageries[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(5):1461-1470. |