测绘学报 ›› 2023, Vol. 52 ›› Issue (5): 760-768.doi: 10.11947/j.AGCS.2023.20210674

• 大地测量学与导航 • 上一篇    下一篇

星光导航星点目标区域提取算法改进

徐彬1, 郑勇1, 陈张雷1, 陈冰1, 陈虓1,2, 李崇辉1   

  1. 1. 信息工程大学地理空间信息学院, 河南 郑州 450001;
    2. 西安卫星测控中心, 陕西 西安 710043
  • 收稿日期:2021-12-14 修回日期:2022-11-05 发布日期:2023-05-27
  • 通讯作者: 李崇辉 E-mail:13525504183@126.com
  • 作者简介:徐彬(1998-),男,硕士,研究方向为天文大地测量。E-mail:xlx29365@163.com
  • 基金资助:
    河南省自然科学基金(212300410421);河南省青年人才托举工程(2022HYTP008)

The improvement of star target region extraction algorithm for star centroid

XU Bin1, ZHENG Yong1, CHEN Zhanglei1, CHEN Bing1, CHEN Xiao1,2, LI Chonghui1   

  1. 1. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China;
    2. Xi'an Satellite Control Center, Xi'an 710043, China
  • Received:2021-12-14 Revised:2022-11-05 Published:2023-05-27
  • Supported by:
    The Natural Science Foundation of Henan Province (No. 212300410421);Young Elite Scientists Sponsorship Program by Henan Association for Science and Technology (No. 2022HYTP008)

摘要: 星图中星点目标区域的提取关乎星点中心提取的精度,对后续星光导航定位计算至关重要。本文针对现有边界搜索算法实时性差、个别星点边界搜索计算失效的不足,以及视框提取算法单个视框内有多颗星点时无法识别处理的缺陷,提出了一种适用于大视场星图多星点目标区域提取的改进算法。基本思路是:首先采用视框提取算法初步提取目标区域;然后利用本文提出的对角线判定算法,筛选出单星点目标区域和可能含有多星点的目标区域;最后对可能的多星点目标区域采用边界搜索算法,提取每颗星点的目标区域,实现多颗星点目标区域的识别处理。实测星图处理结果表明,本文算法提取单星点目标区域的效率比边界搜索算法提高48%;视框大小为16~60个像素时,提取多星点目标区域的准确率优于98%,可消除视框提取算法由于多星点无法识别引起的近10像素的星点中心坐标误差,使星图中所有星点中心坐标的总体提取精度提高3.78倍,达到0.038像素。

关键词: 大视场星图, 星点目标区域, 边界搜索法, 视框提取法

Abstract: The extraction of the target area of star points in star maps is related to the accuracy of the star centroid, which is crucial for celestial navigation. In this paper, an improved algorithm for multi-star target region extraction of a large-field-view star map is proposed to solve the problems of the poor real-time performance of existing boundary search algorithms, the invalidity of boundary search calculation of individual star points, and the inability to recognize and process multiple star points in a single visual frame. The process is as follows: firstly, the visual frame extraction algorithm is used to preliminarily extract the target region. Then, the single-star target region and the target region which may contain multiple stars are screened out by using the diagonal decision algorithm established in this paper. Finally, the boundary search algorithm is used to extract the target region of each star and realize the recognition of the target region of multiple stars. The processing results of measured star maps show that the efficiency of the proposed algorithm is 48% higher than that of the boundary search algorithm. When the visual frame size ranges from 16 to 60 pixels, the accuracy rate of multi-star target region extraction is better than 98%, which can eliminate the star centroid error of nearly 10 pixel caused by the visual frame extraction algorithm, and improve the overall extraction accuracy of star centroid by 3.78 times, reaching 0.038 pixels.

Key words: large field of view star map, star target region, boundary search method, visual frame extraction method

中图分类号: