[1] 郑太雄, 黄帅, 李永福, 等. 基于视觉的三维重建关键技术研究综述[J]. 自动化学报, 2020, 46(4):631-652. ZHENG Taixiong, HUANG Shuai, LI Yongfu, et al. Key techniques for vision based 3D reconstruction: a review[J]. Acta Automatica Sinica, 2020, 46(4):631-652. [2] 杨荣, 冯有前, 袁修久. 利用现有模型修复不完整三维模型[J]. 计算机辅助设计与图形学学报, 2015, 27(1): 98-105. YANG Rong, FENG Youqian, YUAN Xiujiu. Restoration of fragmentary 3D models using existing models[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(1): 98-105. [3] SHASHUA A, LEVIN A. Multi-frame infinitesimal motion model for the reconstruction of (dynamic) scenes with multiple linearly moving objects[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Vancouver:IEEE, 2002: 592-599. [4] 秦爽. 转台拍摄的多视图像前后景自动分割方法研究[D]. 武汉: 武汉大学, 2019. QIN Shuang. Research on automatic segmentation method of foreground and background of multi-view images taken by turntable[D]. Wuhan: Wuhan University, 2019. [5] VIDAL R, MA Yi, SOATTO S, et al. Two-view multibody structure from motion[J].International Journal of Computer Vision, 2006, 68(1): 7-25. [6] 周武根. 动态环境下稠密视觉同时定位与地图构建方法研究[D]. 北京: 中国科学院大学, 2020. ZHOU Wugen. Research on simultaneous location and map construction method of dense vision in dynamic environment[D]. Beijing: University of Chinese Academy of Sciences, 2020. [7] WANGSIRIPITAK S, MURRAY D W. Avoiding moving outliers in visual SLAM by tracking moving objects[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 375-380. [8] CHHAYA F, REDDY D, UPADHYAY S, et al. Monocular reconstruction of vehicles: combining SLAM with shape priors[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 5758-5765. [9] YANG Chong, ZHANG Fan, GAO Yunlong, et al. Moving car recognition and removal for 3D urban modelling using oblique images[J]. Remote Sensing, 2021, 13(17): 3458. [10] HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988. [11] YU Chao, LIU Zuxin, LIU Xinjun, et al. DS-SLAM: a semantic visual SLAM towards dynamic environments[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2019: 1168-1174. [12] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [13] WANG Chenjie, LUO Bin, ZHANG Yun, et al. DymSLAM: 4D dynamic scene reconstruction based on geometrical motion segmentation[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 550-557. [14] KUNDU A, KRISHNA K M, SIVASWAMY J. Moving object detection by multi-view geometric techniques from a single camera mounted robot[C]//Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis:IEEE, 2009: 4306-4312. [15] MIGLIORE D, RIGAMONTI R, MARZORATI D, et al. Use asingle camera for simultaneous localization and mapping with mobile object tracking in dynamic environments[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation.[S.l.]: IEEE, 2009. [16] ZOU Danping, TAN Ping. CoSLAM: collaborative visual SLAM in dynamic environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 354-366. [17] BESCOS B, FÁCIL J M, CIVERA J, et al.DynaSLAM: tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4076-4083. [18] SAPUTRA M R U, MARKHAM A, TRIGONI N. Visual SLAM and structure from motion in dynamic environments: a survey[J]. ACM Computing Surveys, 2018, 51(2): 1-36. [19] HRUBY P, PAJDLA T. Reconstructing small 3D objects in front of a textured background[EB/OL]. [202-07-08]. https://arxiv.org/abs/2105.11352. [20] 盛庆红, 柳建锋, 虞梦昕, 等. 对偶四元数近景影像空中三角测量法[J]. 测绘学报, 2015, 44(5): 503-509. DOI: 10.11947/j.AGCS.2015.20130533. SHENG Qinghong, LIU Jianfeng, YU Mengxin, et al. Aerial triangulation close-range images with dual quaternion[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(5): 503-509. DOI: 10.11947/j.AGCS.2015.20130533. [21] MOISAN L, MOULON P, MONASSE P. Automatic homographic registration of a pair of images, with A contrario elimination of outliers[J]. Image Processing on Line, 2012, 2: 56-73. [22] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. [23] PIOREK M, JABLONSKI B. A quaternion clustering framework[J]. International Journal of Applied Mathematics and Computer Science, 2020, 30(1): 133-147. [24] ZELNIK-MANOR L, PERONA P. Self-tuning spectral clustering[C]//Proceedings of the 17th International Conference on Neural Information Processing Systems. Vancouver: ACM Press, 2004: 1601-1608. [25] GOESELE M, SNAVELY N, CURLESS B, et al.Multi-view stereo for community photo collections[C]//Proceedings of IEEE 11th International Conference on Computer Vision. Rio de Janeiro:IEEE, 2007: 1-8. [26] RAND W M. Objective criteria for the evaluation of clustering methods[J]. Journal of the American Statistical Association, 1971, 66(336): 846-850. [27] ANAS H, JENSEN R R, VOGIATZIS G, et al. Large-scale data for multiple-view stereopsis[J].International Journal of Computer Vision, 2016, 120(2): 153-168. |