[1] PETIT G, LUZUM B. IERS conventions (2010) [M]. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2010. [2] 谢苏锐, 李斐, 鄢建国. 基于空间大地测量与地球物理方法的地心运动研究与监测进展[J]. 地球物理学进展, 2014, 29(1):15-24. XIE Surui, LI Fei, YAN Jianguo. Research and development of the geocenter motion estimation based on space geodesy and geophysical methods[J]. Progress in Geophysics, 2014, 29(1):15-24. [3] DONG D, YUNCK T, HEFLIN M. Origin of the international terrestrial reference frame[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4):1-10. [4] WU Xiaoping, RAY J, VAN DAM T.Geocenter motion and its geodetic and geophysical implications[J]. Journal of Geodynamics, 2012, 58: 44-61. [5] 宋淑丽, 朱文耀, 熊福文, 等. 毫米级地球参考框架的构建[J]. 地球物理学报, 2009, 52(11): 2704-2711. SONG Shuli, ZHU Wenyao, XIONG Fuwen, et al. Construction of mm-level terrestrial reference frame[J]. Chinese Journal of Geophysics, 2009, 52(11): 2704-2711. [6] 程鹏飞, 成英燕. 我国毫米级框架实现与维持发展现状和趋势[J]. 测绘学报, 2017, 46(10): 1327-1335. DOI: 10.11947/j.AGCS.2019.20180108. CHENG Pengfei, CHENG Yingyan. The currents tatus and tendency of China millimeter coordinate frame implementation and maintenance[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1327-1335. DOI: 10.11947/j.AGCS.2019.20180108. [7] ALTAMIMI Z, SILLARD P, BOUCHER C. ITRF2000:a new release of the international terrestrial reference frame for earth science applications[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10): 1-19. [8] COLLILIEUX X, ALTAMIMI Z, RAY J, et al. Effect of the satellite laser ranging network distribution on geocenter motion estimation[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B4): 1-17. [9] MA Yifang, REBISCHUNG P, ALTAMIMI Z, et al. Assessment of geocenter motion estimates from the IGS second reprocessing[J].GPS Solutions, 2020, 24(2): 1-14. [10] 魏娜, 施闯, 刘经南. 利用GPS数据反演地心运动[J]. 武汉大学学报(信息科学版), 2011, 36(4): 441-445. WEI Na, SHI Chuang, LIU Jingnan. Geocenter motion from GPS data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 441-445. [11] RODRIGUEZ-SOLANO C J, HUGENTOBLER U, STEIGENBERGER P, et al. Reducing the draconitic errors in GNSS geodetic products [J]. Journal of Geodesy, 2014, 88(6): 559-574. [12] ZAJDEL R, SOSNICA K, BURY G. Geocenter coordinates derived from multi-GNSS:a look into the role of solar radiation pressure modeling [J]. GPS Solutions,2020,25(1):1-14. [13] ZAJDEL R, SOS'NICA K, DACH R, et al. Network effects and handling of the geocenter motion in multi-GNSS processing[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 5970-5989. [14] DUAN Bingbing, HUGENTOBLER U, SELMKE I, et al. BeiDou satellite radiation force models for precise orbit determination and geodetic applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2823-2836. [15] STEIGENBERGER P, MONTENBRUCK O, BRADKE M, et al. Evaluation of earth rotation parameters from modernized GNSS navigation messages [J].GPS Solutions, 2022, 26(2): 1-12. [16] PENG Yaquan, LOU Yidong, DAI Xiaolei, et al. Impact of solar radiation pressure models on earth rotation parameters derived from BDS[J].GPS Solutions, 2022, 26(4): 1-12. [17] MONTENBRUCK O, STEIGENBERGER P, PRANGE L, et al.The multi-GNSS experiment (MGEX) of the international GNSS service (IGS)-achievements, prospects and challenges[J]. Advances in Space Research, 2017, 59(7): 1671-1697. [18] REBISCHUNG P, SCHMID R. IGS14/igs14.atx: a new-framework for the IGS products[C]//Proceedings of 2016 AGU Fall Meeting. San Francisco:[s.n.],2016. [19] WEISS J P, STEIGENBERGER P, SPRINGER T. Orbit and clock product generation [M]//Springer Handbook of Global Navigation Satellite Systems. Cham:Springer,2017. [20] 邹蓉.地球参考框架建立和维持的关键技术研究[D].武汉:武汉大学,2009. ZOU Rong. Research on key technologies of establishing and maintaining the earth reference frame[D].Wuhan:Wuhan University,2009. [21] STEIGENBERGER P, THOELERT S, MONTENBRUCK O. GNSS satellite transmit power and its impact on orbit determination[J].Journal of Geodesy,2018, 92(6): 609-624. [22] ZHAO Qile, GUO Jing, WANG Chen, et al. Precise orbit determination for BDS satellites[J].Satellite Navigation, 2022, 3(1): 1-24. [23] RODRIGUEZ-SOLANO C J, HUGENTOBLER U, STEIGENBERGER P, et al. Impact of Earth radiation pressure on GPS position estimates[J].Journal of Geodesy,2012, 86(5): 309-317. [24] BIZOUARD C, LAMBERT S, GATTANO C, et al. The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014[J].Journal of Geodesy,2019, 93(5): 621-633. [25] DILSSNER F, LAUFER G, SPRINGER T, et al. The BeiDou attitude model for continuous yawing MEO and IGSO spacecraft[C]//Proceedings of 2018 EGU.Vienna:IEEE,2018. [26] KOUBA J. A simplified yaw-attitude model for eclipsing GPS satellites[J].GPS Solutions,2009, 13(1): 1-12. [27] DILSSNER F, SPRINGER T, ENDERLE W. GPS IIF yaw attitude control during eclipse season [C]//Proceedings of 2011 AGU Fall Meeting.San Francisco:IEEE,2011. [28] LAGLER K, SCHINDELEGGER M, BÖHM J, et al. GPT2: empirical slant delay model for radio space geodetic techniques[J]. Geophysical Research Letters, 2013, 40(6): 1069-1073. [29] BOEHM J, WERL B, SCHUH H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for medium-range weather forecasts operational analysis data[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B2): 1-9. [30] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J, et al. Second-order ionospheric term in GPS: implementation and impact on geodetic estimates[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B8): 1-16. [31] GE Maorong, GENDT G, DICK G, et al. Improving carrier-phase ambiguity resolution in global GPS network solutions[J].Journal of Geodesy, 2005, 79(1-3): 103-110. [32] BEUTLER G, BROCKMANN E, GURTNER W, et al. Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results[J].Manuscripta Geodaetica,1994,19(6):367-386. [33] ARNOLD D, MEINDL M, BEUTLER G, et al. CODE's new solar radiation pressure model for GNSS orbit determination[J].Journal of Geodesy, 2015, 89(8): 775-791. [34] LI Ran, WANG Ningbo, LI Zishen, et al. Precise orbit determination of BDS-3 satellites using B1C and B2a dual-frequency measurements[J].GPS Solutions, 2021, 25(3): 1-14. [35] LI Xingxing, YUAN Yongqiang, ZHU Yiting, et al. Improving BDS-3 precise orbit determination for medium earth orbit satellites[J].GPS Solutions, 2020, 24(2): 1-13. [36] RODRIGUEZ-SOLANO C, HUGENTOBLER U, STEIGENBERGER P. Adjustable box-wing model for solar radiation pressure impacting GPS satellites[J]. Advances in Space Research, 2012, 49(7): 1113-1128. [37] RAY J, ALTAMIMI Z, COLLILIEUX X, et al.Anomalous harmonics in the spectra of GPS position estimates[J]. GPS Solutions,2008, 12(1): 55-64. [38] 胡超, 王潜心, 毛亚. 一种基于DOP值的GNSS超快速观测轨道精化模型[J]. 武汉大学学报(信息科学版), 2020, 45(1): 28-37. HU Chao, WANG Qianxin, MAO Ya. An improved model for the observed GNSS ultra-rapid orbit based on DOP values[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 28-37. |