[1] AMOS C B, AUDET P, HAMMOND W C, et al. Uplift and seismicity driven by groundwater depletion in central California[J]. Nature, 2014, 509(7501): 483-486. [2] BORSA A A, AGNEW D C, CAYAN D R. Ongoing drought-induced uplift in the western United States[J]. Science, 2014, 345(6204): 1587-1590. [3] CHEW C C, SMALL E E. Terrestrial water storage response to the 2012 drought estimated from GPS vertical position anomalies[J]. Geophysical Research Letters, 2014, 41(17): 6145-6151. [4] GALLOWAY D L, JONES D R, INGEBRITSEN S E. Land subsidence in the United States[M]. Restown: United States Geological Survey, 1999: 1182. [5] VAN DAM T, WAHR J, MILLY P C D, et al. Crustal displacements due to continental water loading[J]. Geophysical Research Letters, 2001, 28(4): 651-654. [6] FARRELL W E. Deformation of the Earth by surface loads[J].Reviews of Geophysics, 1972, 10(3): 761-797. [7] BOCK Y, MELGAR D. Physical applications of GPS geodesy: a review[J]. Reports on Progress in Physics Physical Society (Great Britain), 2016, 79(10): 106801. [8] FU Yuning, ARGUS D F, LANDERER F W. GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(1): 552-566. [9] ZHONG Bo, LI Xianpao, CHEN Jianli, et al. Surface mass variations from GPS and GRACE/GFO: a case study in southwest China[J]. Remote Sensing, 2020, 12(11): 1835. [10] JIANG Zhongshan, HSU Y J, YUAN Linguo, et al. Characterizing spatiotemporal patterns of terrestrial water storage variations using GNSS vertical data in Sichuan, China[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(12): e2021JB022398. [11] 何思源, 谷延超, 范东明, 等. 利用GPS垂直位移反演云南省陆地水储量变化[J]. 测绘学报, 2018, 47(3): 332-340.DOI: 10.11947/j.AGCS.2018.20170255. HE Siyuan, GU Yanchao, FAN Dongming, et al. Seasonal variation of terrestrial water storage in Yunnan province inferred from GPS vertical observations[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3): 332-340.DOI: 10.11947/j.AGCS.2018.20170255. [12] 成帅, 袁林果, 姜中山, 等. 应用GPS数据和Slepian基函数反演川云渝地区陆地水储量变化[J]. 地球物理学报, 2021, 64(4): 1167-1180. CHENG Shuai, YUAN Linguo, JIANG Zhongshan, et al. Investigating terrestrial water storage change in Sichuan, Yunnan and Chongqing using Slepian basis functions[J]. Chinese Journal of Geophysics, 2021, 64(4): 1167-1180. [13] JIANG Zhongshan, HSU Y J, YUAN Linguo, et al. Estimation of daily hydrological mass changes using continuous GNSS measurements in mainland China[J]. Journal of Hydrology, 2021, 598: 126349. [14] HAN S C, RAZEGHI S M. GPS recovery of daily hydrologic and atmospheric mass variation: a methodology and results from the Australian continent[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9328-9343. [15] 韩建成, 陈石, 卢红艳, 等. 基于Slepian方法和地面重力观测确定时变重力场模型: 以2011—2013年华北地区数据为例[J]. 地球物理学报, 2021, 64(5): 1542-1557. HAN Jiancheng, CHEN Shi, LU Hongyan, et al. Time-variable gravity field determination using Slepian functions and terrestrial measurements: a case study in North China with data from 2011 to 2013[J]. Chinese Journal of Geophysics, 2021,64(5): 1542-1557. [16] 沈迎春, 闫昊明, 彭鹏, 等. 质量负荷引起地表形变的格林函数和球谐函数方法对比研究[J]. 武汉大学学报(信息科学版), 2017, 42(7): 1008-1014. SHEN Yingchun, YAN Haoming, PENG Peng, et al. Comparative study of Green's function and spherical harmonic function methods on surface deformation caused by mass loading[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 1008-1014. [17] 孙和平. 大气重力格林函数[J]. 科学通报, 1997, 42(15): 1640-1646. SUN Heping.Green's function of atmospheric gravity[J]. Chinese Science Bulletin, 1997, 42(15): 1640-1646. [18] WAHR J, KHAN S A, VAN DAM T, et al. The use of GPS horizontals for loading studies, with applications to northern California and southeast Greenland[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(4): 1795-1806. [19] 归庆明, 黄维彬, 张建军. 抗差泛岭估计[J]. 测绘学报, 1998, 27(3): 211-216. GUI Qingming, HUANG Weibin, ZHANG Jianjun. Robust universal ridge estimation[J]. Acta Geodaetica et Cartographic Sinica, 1998, 27(3): 211-216. [20] TIKHONOV A N,ARSENIN V Y.Solutions of ill-posed problems[M]. Washington DC:Halsted Press,1977. [21] LONGMAN I M. A Green's function for determining the deformation of the Earth under surface mass loads: 2. Computations and numerical results[J]. Journal of Geophysical Research, 1963, 68(2): 485-496. [22] 王振杰, 欧吉坤. 用L-曲线法确定岭估计中的岭参数[J]. 武汉大学学报(信息科学版), 2004, 29(3): 235-238. WANG Zhenjie, OU Jikun. Determining the ridge parameter in a ridge estimation using L-curve method[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3): 235-238. [23] 胡明城. 现代大地测量学的理论及其应用[M]. 北京: 测绘出版社, 2003: 362-384. HU Mingcheng. The theory and the application of contemporary geodesy[M]. Beijing: Surveying and Mapping Press, 2003: 362-384. [24] HOBSON E W. The theory of spherical and ellipsoidal harmonics[M].New York: Chelsea Publishing Company, 1955. [25] BATES A P, KHALID Z, KENNEDY R A. Slepian spatial-spectral concentration problem on the sphere: analytical formulation for limited colatitude-longitude spatial region[J]. IEEE Transactions on Signal Processing, 2017, 65(6): 1527-1537. [26] SIMONS F J, DAHLEN F A. Spherical Slepian functions and the polar gap in geodesy[J]. Geophysical Journal International, 2006, 166(3): 1039-1061. [27] FOK H S, LIU Yongxin. An improved GPS-inferred seasonal terrestrial water storage using terrain-corrected vertical crustal displacements constrained by GRACE[J]. Remote Sensing, 2019, 11(12): 1433. [28] ARGUS D F, FU Yuning, LANDERER F W. Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion[J]. Geophysical Research Letters, 2014, 41(6): 1971-1980. |