[1] DENG Liansheng, JIANG Weiping, LI Zhao, et al. Assessment of second- and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series[J].Journal of Geodesy, 2017, 91(2): 207-227. [2] WU Weiwei, WU Jicang, MENG Guojie. A study of rank defect and network effect in processing the CMONOC network on Bernese[J]. Remote Sensing, 2018, 10(3): 357. [3] 姜卫平, 王锴华, 李昭, 等. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2112-2123. JIANG Weiping, WANG Kaihua, LI Zhao, et al. Prospect and theory of GNSS coordinate time series analysis[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2112-2123. [4] YAO Yibin, YANG Yuanxi, SUN Heping, et al. Geodesy discipline: progress and perspective[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 1-10. [5] REN Yingying, LIAN Lizhen, WANG Jiexian. Analysis of seismic deformation from global three-decade GNSS displacements: implications for a three-dimensional earth GNSS velocity field[J]. Remote Sensing, 2021, 13(17): 3369. [6] WANG Jian, JIANG Weiping, LI Zhao, et al. A new multi-scale sliding window LSTM framework (MSSW-LSTM): a case study for GNSS time-series prediction[J]. Remote Sensing, 2021, 13(16): 3328. [7] STALLER A, ÁLVAREZ-GÓMEZ J A, LUNA M P, et al. Crustal motion and deformation in Ecuador from cGNSS time series[J]. Journal of South American Earth Sciences, 2018, 86: 94-109. [8] HOBBS B, ORD A. Nonlinear dynamical analysis of GNSS data: quantification, precursors and synchronisation[J].Progress in Earth and Planetary Science, 2018, 5(1): 1-35. [9] XU K, HE R, LI K, et al. Secular crustal deformation characteristics prior to the 2011 Tohoku-Oki earthquake detected from GNSS array, 2003—2011[J]. Advances in Space Research, 2021. [10] XI R, JIANG W, MENG X, et al. Rapid initialization method in real-time deformation monitoring of bridges with triple-frequency BDS and GPS measurements[J]. Advances in Space Research, 2018, 62(5): 976-989. [11] CHEN Qusen, JIANG Weiping, MENG Xiaolin, et al. Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the forth road bridge in the UK[J]. Remote Sensing, 2018, 10(3): 364. [12] XIN Jingzhou, ZHOU Jianting, YANG S, et al. Bridge structure deformation prediction based on GNSS data using Kalman-ARIMA-GARCH model[J]. Sensors, 2018, 18(1): 298. [13] ZHANG Ruicheng, GAO Chengfa, PAN Shuguo, et al. Fusion of GNSS and speedometer based on VMD and its application in bridge deformation monitoring[J]. Sensors, 2020, 20(3): 694. [14] ALTAMIMI Z, REBISCHUNG P, MÉTIVIER L, et al. ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(8): 6109-6131. [15] LAHTINEN S, JIVALL L, HÄKLI P, et al. Densification of the ITRF2014 position and velocity solution in the Nordic and Baltic countries[J].GPS Solutions, 2019, 23(4): 1-13. [16] LI Z, CHEN W, DAM T, et al. Comparative analysis of different atmospheric surface pressure models and their impacts on daily ITRF2014 GNSS residual time series[J].Journal of Geodesy, 2020, 94(4): 1-20. [17] KOWALCZYK K, PAJAK K, WIECZOREK B, et al. An analysis of vertical crustal movements along the European coast from satellite altimetry, tide gauge, GNSS and radar interferometry[J]. Remote Sensing, 2021, 13(11): 2173. [18] 鲁铁定, 李祯. 基于Prophet-XGBoost模型的GNSS高程时间序列预测[J]. 大地测量与地球动力学, 2022, 42(9): 898-903. LU Tieding, LI Zhen. Prediction of GNSS vertical coordinate time series based on prophet-XGBoost model[J]. Journal of Geodesy and Geodynamics, 2022, 42(9): 898-903. [19] LI Zhen, LU Tieding. Prediction of multistation GNSS vertical coordinate time series based on XGBoost algorithm[M]//Lecture notes in electrical engineering. Singapore: Springer Nature Singapore, 2022: 275-286. [20] LI Wenhao, LI Fei, ZHANG Shengkai, et al. Spatiotemporal filtering and noise analysis for regional GNSS network in Antarctica using independent component analysis[J]. Remote Sensing, 2019, 11(4): 386. [21] NISTOR S, SUBA N S, MACIUK K, et al. Analysis of noise and velocity in GNSS EPN-repro 2 time series[J]. Remote Sensing, 2021, 13(14): 2783. [22] 贺小星, 花向红, 鲁铁定, 等. 时间跨度对GPS坐标序列噪声模型及速度估计影响分析[J]. 国防科技大学学报, 2017, 39(6): 12-18. HE Xiaoxing, HUA Xianghong, LU Tieding, et al. Effect of time span on GPS time series noise model and velocity estimation[J]. Journal of National University of Defense Technology, 2017, 39(6): 12-18. [23] 李威, 鲁铁定, 贺小星, 等. 基于Prophet-RF模型的GNSS高程坐标时间序列预测分析[J]. 大地测量与地球动力学, 2021, 41(2)116-121. LI Wei, LU Tieding, HE Xiaoxing, et al. Prediction and analysis of GNSS vertical coordinate time series based on prophet-RF model[J]. Journal of Geodesy and Geodynamics, 2021, 41(2)116-121. [24] TAO Rui, LU Tieding, CHENG Yuanming, et al. An improved GNSS vertical time series prediction model using EWT[M]//Lecture notes in electrical engineering. Singapore: Springer Singapore, 2021: 298-313. [25] XUE Jingming, ZHOU Sihang, LIU Qiang, et al. Financial time series prediction using ℓ2, 1RF-ELM[J]. Neurocomputing, 2018, 277: 176-186. [26] LIN L, WANG F, XIE X, et al. Random forests-based extreme learning machine ensemble for multi-regime time series prediction[J]. Expert Systems with Applications, 2017, 83: 164-176. [27] CHEN Tianqi, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM press, 2016: 785-794. [28] LIN Mengying, ZHU Xuefen, HUA Teng, et al. Detection of ionospheric scintillation based on XGBoost model improved by SMOTE-ENN technique[J]. Remote Sensing, 2021, 13(13): 2577. [29] ALIM M, YE Guohua, GUAN Peng, et al. Comparison of ARIMA model and XGBoost model for prediction of human brucellosis in mainland China: a time-series study[J]. BMJ Open, 2020, 10(12): e039676. [30] 丁武, 马媛, 杜诗蕾, 等. 基于XGBoost算法的多元水文时间序列趋势相似性挖掘[J]. 计算机科学, 2020, 47(S2): 459-463. DING Wu, MA Yuan, DU Shilei, et al. Mining trend similarity of multivariate hydrological time series based on XGBoost algorithm[J]. Computer Science, 2020, 47(S02): 459-463. [31] 朋子涵,高成发,刘永胜,等.手机GNSS数据质量提取的变分模态分解法[J].测绘学报,2021,50(4):475-486. DOI: 10.11947/j.AGCS.2021.20200258. PENG Zihan, GAO Chengfa, LIU Yongsehng, et al. Variational mode decomposition method for setimation of GNSS data quality from a smartphone[J]. Acta Geodaetica et Cartographica Sinica,2021,50(4): 475-486. DOI: 10.11947/j.AGCS.2021.20200258. [32] XU Huaqing, LU Tieding, MONTILLET J P, et al. An improved adaptive IVMD-WPT-based noise reduction algorithm on GPS height time series[J]. Sensors, 2021, 21(24): 8295. [33] JIANG Hui, HE Zheng, YE Gang, et al. Network intrusion detection based on PSO-xgboost model[J]. IEEE Access, 2020, 8: 58392-58401. [34] LIVIERIS I E, PINTELAS E, PINTELAS P. A CNN-LSTM model for gold price time-series forecasting[J].Neural Computing and Applications, 2020, 32(23): 17351-17360. [35] MA Lan, TIAN Shan. A hybrid CNN-LSTM model for aircraft 4D trajectory prediction[J]. IEEE Access, 2020, 8: 134668-134680. [36] XIE Hailun, ZHANG Li, LIM C P. Evolving CNN-LSTM models for time series prediction using enhanced grey wolf optimizer[J]. IEEE Access, 2020, 8: 161519-161541. [37] GAO Wenzong, LI Zhao, CHEN Qusen, et al. Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches[J]. Journal of Geodesy, 2022, 96(10): 71. |