测绘学报 ›› 2025, Vol. 54 ›› Issue (7): 1305-1317.doi: 10.11947/j.AGCS.2025.20240448

• 地图学与地理信息 • 上一篇    下一篇

顾及地理空间特性的空间面板数据可预测性评估理论与方法

邓敏(), 彭翀, 谌恺祺()   

  1. 中南大学地球科学与信息物理学院,湖南 长沙 410083
  • 收稿日期:2024-11-01 修回日期:2025-06-18 出版日期:2025-08-18 发布日期:2025-08-18
  • 通讯作者: 谌恺祺 E-mail:dengmin@csu.edu.cn;chenkaiqi@csu.edu.cn
  • 作者简介:邓敏(1974—),男,博士,教授,研究方向为时空大数据挖掘与智能服务。E-mail:dengmin@csu.edu.cn
  • 基金资助:
    国家自然科学基金(42171459)

A predictability measurement methodology for spatial panel data considering geo-spatial effects

Min DENG(), Chong PENG, Kaiqi CHEN()   

  1. School of Geosciences and Info-physics, Central South University, Changsha 410083, China
  • Received:2024-11-01 Revised:2025-06-18 Online:2025-08-18 Published:2025-08-18
  • Contact: Kaiqi CHEN E-mail:dengmin@csu.edu.cn;chenkaiqi@csu.edu.cn
  • About author:DENG Min (1974—), male, PhD, professor, majors in spatio-temporal big data mining and intelligent services. E-mail: dengmin@csu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42171459)

摘要:

空间面板数据具有空间和时间维度信息规整的特点,常用于地理现象时空演化过程的记录,是时空预测研究的主流数据结构。特别是在以神经网络为核心的人工智能时代,空间面板数据无须额外处理,便可输入卷积网络、循环网络等智能化模型,具有信息无损与计算便捷的优势,常用于人类活动、交通出行等领域的预测研究。然而,现有研究聚焦模型方法的提升,忽视了空间面板数据可预测性的理论研究。统计学等领域有基于熵的可预测性理论,广泛用于时间序列分析,但忽视了空间面板数据中空间依赖、空间异质与地理相似等地理空间特性的影响,导致评估结果不准。对此,本文顾及地理空间特性,提出邻域转移熵、交叉空间熵与交叉区域熵在内的地理熵理论与方法,从特征学习、参数训练、应用测试的不同环节,定量评估空间面板数据的可预测性,为时空预测研究中空间邻域学习、局部模型构建与迁移泛化策略提供理论依据。

关键词: 可预测性, 空间面板数据, 空间依赖性, 空间异质性, 地理相似性,

Abstract:

Spatial panel data, characterized by the regularity of information in both spatial and temporal dimensions, are commonly used to record the spatial-temporal evolution of geographic phenomena, and are the mainstream data structure for spatial-temporal prediction research. Especially in the era of artificial intelligence centered on neural networks, spatial panel data can be input into intelligent models such as convolutional networks and recurrent networks without additional processing, which has the advantages of non-destructive information and convenient computation, and is commonly used in prediction research in the fields of human activities and transportation. However, the existing research focuses on the enhancement of modeling methods, and the theoretical issues of whether the data itself can be predicted, to what extent it can be predicted, and how it should be predicted are seldom addressed. There is entropy-based predictability theory in the field of information and statistics, which is widely used in time series analysis, but it neglects geo-spatial effects such as spatial dependence, spatial heterogeneity and geographic similarity in the spatial panel data and its influence mechanism on the prediction potential and modeling approach, which leads to inaccurate assessment results. In this regard, based on the existing predictability assessment theory, this paper proposes the geographic entropy theory and method, including neighborhood transfer entropy, cross-space entropy and cross-region entropy, taking into account the influence mechanism of geo-spatial effects, so as to quantitatively assess the predictability of spatial panel data from the different aspects of feature learning, parameter training, and application testing and to provide theoretical basis for the study of spatial-temporal prediction, spatial neighborhood learning, local model construction, and transfer and generalization strategy.

Key words: predictability, spatial panel data, spatial dependence, spatial heterogeneity, geographic similarity, entropy

中图分类号: