测绘学报 ›› 2020, Vol. 49 ›› Issue (11): 1497-1505.doi: 10.11947/j.AGCS.2020.20190528
肖佳1,2, 田沁3,4, 何宗宜5
收稿日期:
2019-07-04
修回日期:
2019-12-12
发布日期:
2020-11-25
作者简介:
肖佳(1987-),男,讲师,研究方向为地理空间语义、地图综合和深度学习。E-mail:jiaxiao@mail.ccnu.edu.cn
基金资助:
XIAO Jia1,2, TIAN Qin3,4, HE Zongyi5
Received:
2019-07-04
Revised:
2019-12-12
Published:
2020-11-25
Supported by:
摘要: 提出了一种基于相对指数熵的地理信息数据分级评价模型,构建级内相对指数熵与级间指数熵指标,分别量化分级数据级别内集聚水平和级别间的离散水平,并利用这两个指标构建了地理信息数据分级的相对指数熵评价指标。在Python中实现地理信息数据分级以及分级的相对指数熵计算。试验中,应用5种常用的分级方法对5种典型分布的6个数据集以及1个人口普查数据集进行分级,并分别计算分级结果的相对指数熵指标。试验结果表明,在面向不同分布的数据集时,相对指数熵指标能够很好地指示出最优分级方法,并且反映出不同分级方法的细小差异,对于地理信息数据分级的评价是有效的。
中图分类号:
肖佳, 田沁, 何宗宜. 地理信息数据分级评价的相对指数熵模型[J]. 测绘学报, 2020, 49(11): 1497-1505.
XIAO Jia, TIAN Qin, HE Zongyi. Relative exponential entropy model on classification evaluation of geographic information data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11): 1497-1505.
[1] 陆效中. 统计地图的分级表示法[M]. 北京:解放军出版社, 1989. LU Xiaozhong. Classification representation of statistic maps[M]. Beijing:The PLA Press, 1989. [2] JENKS G F. Generalization in statistical mapping[J]. Annals of the Association of American Geographers, 1963, 53(1):15-26. [3] JIANG Bin. Head/Tail breaks:a new classification scheme for data with a heavy-tailed distribution[J]. The Professional Geographer, 2013, 65(3):482-494. DOI:10.1080/00330124.2012.700499. [4] 江南, 白小双, 孙娟娟. 基于多属性决策的统计数据分级评价模型[J]. 测绘学报, 2007, 36(2):198-202. DOI:10.3321/j.issn:1001-1595.2007.02.015. JIANG Nan, BAI Xiaoshuang, SUN Juanjuan. Classification evaluation model of statistic data based on multiattribute decision-making[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(2):198-202. DOI:10.3321/j.issn:1001-1595.2007.02.015. [5] 孙亚梅, 王如云. 专题要素分级的新方法及其应用[J]. 测绘学报, 1994, 23(1):59-66. SUN Yamei, WANG Ruyun. A new grading method and its application in grading of thematic elements[J]. Acta Geodaetica et Cartographica Sinica, 1994, 23(1):59-66. [6] 何宗宜. 地图数据处理模型的原理与方法[M]. 武汉:武汉大学出版社, 2004. HE Zongyi. Elements and methods of model for cartographical data processing[M]. Wuhan:Wuhan University Press, 2004. [7] ARMSTRONG M P, XIAO Ningchuan, BENNETT D A. Using genetic algorithms to create multicriteria class intervals for choropleth maps[J]. Annals of the Association of American Geographers, 2003, 93(3):595-623. [8] 郭庆胜, 李留所, 贾玉明, 等. 顾及空间自相关的统计数据分级质量评价[J]. 武汉大学学报(信息科学版), 2006, 31(3):240-243, 251. GUO Qingsheng, LI Liusuo, JIA Yuming, et al. Quality evaluation of statistical data classification considering spatial autocorrelation[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3):240-243, 251. [9] 姚宇婕, 陈毓芬. 引导型专题数据分级处理研究[J]. 测绘工程, 2012, 21(1):25-29. YAO Yujie, CHEN Yufen. Research on guiding thematic data classification[J]. Engineering of Surveying and Mapping, 2012, 21(1):25-29. [10] CROMLEY R G, MROZINSKI R D. An evaluation of classification schemes based on the statistical versus the spatial structure properties of geographic distributions in choropleth mapping[C]//Proceedings of 1997 ACSM/ASPRS Annual Convention & Exposition. Seattle:American Society for Photogrammetry and Remote Sensing, 1997:76-85. [11] BREWER C A, PICKLE L. Evaluation of methods for classifying epidemiological data on choropleth maps in series[J]. Annals of the Association of American Geographers, 2002, 92(4):662-681. [12] EICHER C L, BREWER C A. Dasymetric mapping and areal interpolation:implementation and evaluation[J]. Cartography and Geographic Information Science, 2001, 28(2):125-138. [13] SUN Min, WONG D, KRONENFELD B. A heuristic multi-criteria classification approach incorporating data quality information for choropleth mapping[J]. Cartography and Geographic Information Science, 2017, 44(3):246-258. [14] SUN Min, WONG D W, KRONENFELD B J. A classification method for choropleth maps incorporating data reliability information[J]. The Professional Geographer, 2015, 67(1):72-83. [15] KOO H, CHUN Yongwan, GRIFFITH D A. Optimal map classification incorporating uncertainty information[J]. Annals of the American Association of Geographers, 2017, 107(3):575-590. [16] MU Wangshu, TONG Daoqin. Choropleth mapping with uncertainty:a maximum likelihood-based classification scheme[J]. Annals of the American Association of Geographers, 2019, 109(5):1493-1510. [17] CHUN Yongwan, KOO H, GRIFFITH D A. A comparison of optimal map classification methods incorporating uncertainty information[C]//BAILLY J S, GRIFFITH D, JOSSELIN D. Proceedings of Spatial Accuracy 2016. Avignon, France:International Spatial Accuracy Research Association, 2016:20-22. [18] WEI Ran, GRUBESIC T H. An alternative classification scheme for uncertain attribute mapping[J]. The Professional Geographer, 2017, 69(4):604-615. [19] 李志林, 刘启亮, 高培超. 地图信息论:从狭义到广义的发展回顾[J]. 测绘学报, 2016, 45(7):757-767. DOI:10.11947/j.AGCS.2016.20160235. LI Zhilin, LIU Qiliang, GAO Peichao. Entropy-based cartographic communication models:evolution from special to general cartographic information theory[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):757-767. DOI:10.11947/j.AGCS.2016.20160235. [20] SUKHOV V I. Information capacity of a map entropy[J]. Geodesy and Aerophotography, 1967, X(5):212-215. [21] 王少一, 王昭, 杜清运. 顾及地图要素级别的几何信息量量测方法[J]. 测绘科学, 2007, 32(4):60-62. WANG Shaoyi, WANG Zhao, DU Qingyun. A measurement method of geometrical information considering multi-level map feature[J]. Science of Surveying and Mapping, 2007, 32(4):60-62. [22] 邓敏, 樊子德, 刘慧敏. 层次信息量的线要素化简算法评价研究[J]. 测绘学报, 2013, 42(5):767-773, 781. DENG Min, FAN Zide, LIU Huimin. Performance evaluation of line simplification algorithms based on hierarchical information content[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5):767-773, 781. [23] 艾廷华, 何亚坤, 杜欣. GIS数据尺度变换中的信息熵变化[J]. 地理与地理信息科学, 2015, 31(2):7-11. AI Tinghua, HE Yakun, DU Xin. Information entropy change in GIS data scale transformation[J]. Geography and Geo-Information Science, 2015, 31(2):7-11. [24] BJØRKE J T. Exploration of information theoretic arguments for the limited amount of information in a map[J]. Cartography and Geographic Information Science, 2012, 39(2):88-97. [25] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(4):623-656. [26] PAL S K, PAL N R. Object-background classification using a new definition of entropy[C]//Proceedings of 1988 IEEE International Conference on Systems, Man, and Cybernetics. Beijing:IEEE, 1988:773-776. |
[1] | 刘经南, 罗亚荣, 郭迟, 高柯夫. PNT智能与智能PNT[J]. 测绘学报, 2022, 51(6): 811-828. |
[2] | 韩李涛, 周丽娟, 龚城, 张爱国. 顾及步行习惯的室内导航网络及其生成算法[J]. 测绘学报, 2022, 51(5): 729-738. |
[3] | 方金凤, 孟祥福. 基于LBSN和多图融合的兴趣点推荐[J]. 测绘学报, 2022, 51(5): 739-749. |
[4] | 张睿卓. 基于多源数据的林区电力走廊安全风险评估方法[J]. 测绘学报, 2022, 51(5): 784-784. |
[5] | 夏吉喆, 周颖, 李珍, 李帆, 乐阳, 程涛, 李清泉. 城市时空大数据驱动的新型冠状病毒传播风险评估——以粤港澳大湾区为例[J]. 测绘学报, 2020, 49(6): 671-680. |
[6] | 朱庆, 冯斌, 李茂粟, 陈媚特, 徐肇文, 谢潇, 张叶廷, 刘铭崴, 黄志勤, 冯义从. 面向动态关联数据的高效稀疏图索引方法[J]. 测绘学报, 2020, 49(6): 681-691. |
[7] | 陆川伟, 孙群, 陈冰, 温伯威, 赵云鹏, 徐立. 车辆轨迹数据的道路学习提取法[J]. 测绘学报, 2020, 49(6): 692-702. |
[8] | 尹烁, 闫小明, 晏雄锋. 基于特征边重构的建筑物化简方法[J]. 测绘学报, 2020, 49(6): 703-710. |
[9] | 吴华意, 黄蕊, 游兰, 向隆刚. 出租车轨迹数据挖掘进展[J]. 测绘学报, 2019, 48(11): 1341-1356. |
[10] | 郭庆胜, 刘洋, 李萌, 程晓茜, 何捷, 王慧慧, 魏智威. 基于网格模型的导航道路图渐进式化简方法[J]. 测绘学报, 2019, 48(11): 1357-1368. |
[11] | 吴政, 武鹏达, 李成名. 对等网络下自适应层级的矢量数据时空索引构建方法[J]. 测绘学报, 2019, 48(11): 1369-1379. |
[12] | 王培晓, 张恒才, 王海波, 吴升. ST-CFSFDP:快速搜索密度峰值的时空聚类算法[J]. 测绘学报, 2019, 48(11): 1380-1390. |
[13] | 万子健, 李连营, 杨敏, 周校东. 车辆轨迹数据提取道路交叉口特征的决策树模型[J]. 测绘学报, 2019, 48(11): 1391-1403. |
[14] | 胡光辉, 熊礼阳, 汤国安. DEM地表坡向变率的向量几何计算法[J]. 测绘学报, 2019, 48(11): 1404-1414. |
[15] | 张旭, 郝向阳, 李建胜, 李朋月. 监控视频中动态目标与地理空间信息的融合与可视化方法[J]. 测绘学报, 2019, 48(11): 1415-1423. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 510
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 878
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||