
测绘学报 ›› 2020, Vol. 49 ›› Issue (11): 1497-1505.doi: 10.11947/j.AGCS.2020.20190528
肖佳1,2, 田沁3,4, 何宗宜5
收稿日期:2019-07-04
修回日期:2019-12-12
发布日期:2020-11-25
作者简介:肖佳(1987-),男,讲师,研究方向为地理空间语义、地图综合和深度学习。E-mail:jiaxiao@mail.ccnu.edu.cn
基金资助:XIAO Jia1,2, TIAN Qin3,4, HE Zongyi5
Received:2019-07-04
Revised:2019-12-12
Published:2020-11-25
Supported by:摘要: 提出了一种基于相对指数熵的地理信息数据分级评价模型,构建级内相对指数熵与级间指数熵指标,分别量化分级数据级别内集聚水平和级别间的离散水平,并利用这两个指标构建了地理信息数据分级的相对指数熵评价指标。在Python中实现地理信息数据分级以及分级的相对指数熵计算。试验中,应用5种常用的分级方法对5种典型分布的6个数据集以及1个人口普查数据集进行分级,并分别计算分级结果的相对指数熵指标。试验结果表明,在面向不同分布的数据集时,相对指数熵指标能够很好地指示出最优分级方法,并且反映出不同分级方法的细小差异,对于地理信息数据分级的评价是有效的。
中图分类号:
肖佳, 田沁, 何宗宜. 地理信息数据分级评价的相对指数熵模型[J]. 测绘学报, 2020, 49(11): 1497-1505.
XIAO Jia, TIAN Qin, HE Zongyi. Relative exponential entropy model on classification evaluation of geographic information data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11): 1497-1505.
| [1] 陆效中. 统计地图的分级表示法[M]. 北京:解放军出版社, 1989. LU Xiaozhong. Classification representation of statistic maps[M]. Beijing:The PLA Press, 1989. [2] JENKS G F. Generalization in statistical mapping[J]. Annals of the Association of American Geographers, 1963, 53(1):15-26. [3] JIANG Bin. Head/Tail breaks:a new classification scheme for data with a heavy-tailed distribution[J]. The Professional Geographer, 2013, 65(3):482-494. DOI:10.1080/00330124.2012.700499. [4] 江南, 白小双, 孙娟娟. 基于多属性决策的统计数据分级评价模型[J]. 测绘学报, 2007, 36(2):198-202. DOI:10.3321/j.issn:1001-1595.2007.02.015. JIANG Nan, BAI Xiaoshuang, SUN Juanjuan. Classification evaluation model of statistic data based on multiattribute decision-making[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(2):198-202. DOI:10.3321/j.issn:1001-1595.2007.02.015. [5] 孙亚梅, 王如云. 专题要素分级的新方法及其应用[J]. 测绘学报, 1994, 23(1):59-66. SUN Yamei, WANG Ruyun. A new grading method and its application in grading of thematic elements[J]. Acta Geodaetica et Cartographica Sinica, 1994, 23(1):59-66. [6] 何宗宜. 地图数据处理模型的原理与方法[M]. 武汉:武汉大学出版社, 2004. HE Zongyi. Elements and methods of model for cartographical data processing[M]. Wuhan:Wuhan University Press, 2004. [7] ARMSTRONG M P, XIAO Ningchuan, BENNETT D A. Using genetic algorithms to create multicriteria class intervals for choropleth maps[J]. Annals of the Association of American Geographers, 2003, 93(3):595-623. [8] 郭庆胜, 李留所, 贾玉明, 等. 顾及空间自相关的统计数据分级质量评价[J]. 武汉大学学报(信息科学版), 2006, 31(3):240-243, 251. GUO Qingsheng, LI Liusuo, JIA Yuming, et al. Quality evaluation of statistical data classification considering spatial autocorrelation[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3):240-243, 251. [9] 姚宇婕, 陈毓芬. 引导型专题数据分级处理研究[J]. 测绘工程, 2012, 21(1):25-29. YAO Yujie, CHEN Yufen. Research on guiding thematic data classification[J]. Engineering of Surveying and Mapping, 2012, 21(1):25-29. [10] CROMLEY R G, MROZINSKI R D. An evaluation of classification schemes based on the statistical versus the spatial structure properties of geographic distributions in choropleth mapping[C]//Proceedings of 1997 ACSM/ASPRS Annual Convention & Exposition. Seattle:American Society for Photogrammetry and Remote Sensing, 1997:76-85. [11] BREWER C A, PICKLE L. Evaluation of methods for classifying epidemiological data on choropleth maps in series[J]. Annals of the Association of American Geographers, 2002, 92(4):662-681. [12] EICHER C L, BREWER C A. Dasymetric mapping and areal interpolation:implementation and evaluation[J]. Cartography and Geographic Information Science, 2001, 28(2):125-138. [13] SUN Min, WONG D, KRONENFELD B. A heuristic multi-criteria classification approach incorporating data quality information for choropleth mapping[J]. Cartography and Geographic Information Science, 2017, 44(3):246-258. [14] SUN Min, WONG D W, KRONENFELD B J. A classification method for choropleth maps incorporating data reliability information[J]. The Professional Geographer, 2015, 67(1):72-83. [15] KOO H, CHUN Yongwan, GRIFFITH D A. Optimal map classification incorporating uncertainty information[J]. Annals of the American Association of Geographers, 2017, 107(3):575-590. [16] MU Wangshu, TONG Daoqin. Choropleth mapping with uncertainty:a maximum likelihood-based classification scheme[J]. Annals of the American Association of Geographers, 2019, 109(5):1493-1510. [17] CHUN Yongwan, KOO H, GRIFFITH D A. A comparison of optimal map classification methods incorporating uncertainty information[C]//BAILLY J S, GRIFFITH D, JOSSELIN D. Proceedings of Spatial Accuracy 2016. Avignon, France:International Spatial Accuracy Research Association, 2016:20-22. [18] WEI Ran, GRUBESIC T H. An alternative classification scheme for uncertain attribute mapping[J]. The Professional Geographer, 2017, 69(4):604-615. [19] 李志林, 刘启亮, 高培超. 地图信息论:从狭义到广义的发展回顾[J]. 测绘学报, 2016, 45(7):757-767. DOI:10.11947/j.AGCS.2016.20160235. LI Zhilin, LIU Qiliang, GAO Peichao. Entropy-based cartographic communication models:evolution from special to general cartographic information theory[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):757-767. DOI:10.11947/j.AGCS.2016.20160235. [20] SUKHOV V I. Information capacity of a map entropy[J]. Geodesy and Aerophotography, 1967, X(5):212-215. [21] 王少一, 王昭, 杜清运. 顾及地图要素级别的几何信息量量测方法[J]. 测绘科学, 2007, 32(4):60-62. WANG Shaoyi, WANG Zhao, DU Qingyun. A measurement method of geometrical information considering multi-level map feature[J]. Science of Surveying and Mapping, 2007, 32(4):60-62. [22] 邓敏, 樊子德, 刘慧敏. 层次信息量的线要素化简算法评价研究[J]. 测绘学报, 2013, 42(5):767-773, 781. DENG Min, FAN Zide, LIU Huimin. Performance evaluation of line simplification algorithms based on hierarchical information content[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5):767-773, 781. [23] 艾廷华, 何亚坤, 杜欣. GIS数据尺度变换中的信息熵变化[J]. 地理与地理信息科学, 2015, 31(2):7-11. AI Tinghua, HE Yakun, DU Xin. Information entropy change in GIS data scale transformation[J]. Geography and Geo-Information Science, 2015, 31(2):7-11. [24] BJØRKE J T. Exploration of information theoretic arguments for the limited amount of information in a map[J]. Cartography and Geographic Information Science, 2012, 39(2):88-97. [25] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(4):623-656. [26] PAL S K, PAL N R. Object-background classification using a new definition of entropy[C]//Proceedings of 1988 IEEE International Conference on Systems, Man, and Cybernetics. Beijing:IEEE, 1988:773-776. |
| [1] | 邱越, 武芳, 翟仁健, 钱海忠, 黄哲琨, 李博. 面向匹配优化的多源建筑物实体级保形空间对齐模型[J]. 测绘学报, 2025, 54(12): 2262-2275. |
| [2] | 张锦彬, 朱军, 党沛, 周宇轩, 杨博文. 现场直播式地理信息服务:基于VR全景的现场实况远程临浸感知[J]. 测绘学报, 2025, 54(12): 2276-2286. |
| [3] | 张岩. 基于街景影像的城市功能区多尺度时空感知方法[J]. 测绘学报, 2025, 54(12): 2289-2289. |
| [4] | 曾进. 城市社会空间的空间大数据量化表达与分析方法:以深圳市为例[J]. 测绘学报, 2025, 54(12): 2292-2292. |
| [5] | 刘少俊. 基于手机信令数据的城市人群活动时空格局分析研究[J]. 测绘学报, 2025, 54(12): 2295-2295. |
| [6] | 吴超, 梁咏翔, 岳瀚, 崔远政, 黄波. 面向计数数据的时空地理加权泊松回归模型[J]. 测绘学报, 2025, 54(11): 2026-2039. |
| [7] | 王小龙, 王卓, 李精忠, 闫浩文. 微地图制图的空间方向关系转译法[J]. 测绘学报, 2025, 54(11): 2040-2051. |
| [8] | 胡鑫, 杨学习, 江一凡, 王宪彬, 丁晨, 谢顾然, 邓敏. 基于多智能体层次化协同的地理事件抽取与时空解析[J]. 测绘学报, 2025, 54(11): 2052-2067. |
| [9] | 李俊, 李朝奎, 黄磊, 冯媛媛. 高速公路广告牌巡检目标跟踪的改进ByteTrack算法[J]. 测绘学报, 2025, 54(11): 2068-2080. |
| [10] | 叶欣宇, 徐胜华, 刘纪平, 陈虹宇, 王琢璐, 李维炼. 基于时空因果推断的下一个兴趣点推荐[J]. 测绘学报, 2025, 54(11): 2081-2096. |
| [11] | 赵学胜, 谢文澜, 孙文彬. 空间格网互操作的研究进展与关键问题[J]. 测绘学报, 2025, 54(10): 1727-1740. |
| [12] | 高凡, 路威, 甘麟露, 章繁, 荣凤娟, 汤士涵. 智能驱动的并行地理计算引擎框架[J]. 测绘学报, 2025, 54(10): 1877-1892. |
| [13] | 吴浩宇, 朱庆, 丁雨淋, 鲍榴, 刘利. 数据模型知识协同驱动的隧道围岩高精度数字孪生建模方法[J]. 测绘学报, 2025, 54(10): 1893-1906. |
| [14] | 郝彧露. 时空数据驱动的城市区域火灾风险评估预测模型及应用[J]. 测绘学报, 2025, 54(10): 1910-1910. |
| [15] | 张付兵, 孙群, 徐青, 马京振, 黄文君, 陈若虚. 随机森林和图神经网络支持下的河系自动分级与选取方法[J]. 测绘学报, 2025, 54(9): 1697-1711. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||