
测绘学报 ›› 2025, Vol. 54 ›› Issue (11): 2026-2039.doi: 10.11947/j.AGCS.2025.20240502
• 地图学与地理信息 • 上一篇
吴超1,2,3(
), 梁咏翔1, 岳瀚4, 崔远政5,6, 黄波7(
)
收稿日期:2024-12-10
修回日期:2025-09-23
发布日期:2025-12-15
通讯作者:
黄波
E-mail:chaowu@njupt.edu.cn;bohuang@hku.hk
作者简介:吴超(1992—),女,博士,副教授,研究方向为时空数据分析与建模。E-mail:chaowu@njupt.edu.cn
基金资助:
Chao WU1,2,3(
), Yongxiang LIANG1, Han YUE4, Yuanzheng CUI5,6, Bo HUANG7(
)
Received:2024-12-10
Revised:2025-09-23
Published:2025-12-15
Contact:
Bo HUANG
E-mail:chaowu@njupt.edu.cn;bohuang@hku.hk
About author:WU Chao (1992—), female, PhD, associate professor, majors in spatio-temporal data analysis and modeling. E-mail: chaowu@njupt.edu.cn
Supported by:摘要:
时空地理加权回归模型(GTWR)作为局部时空统计的核心方法,能够精准且灵活地捕捉数据中的时空异质性。然而,针对诸如犯罪数、病例数和交通事故数等具有非连续性和非正态性特征的计数数据时,传统的基于高斯分布的GTWR模型常面临预测不准确和模型设定不恰当等挑战。因此,本文将泊松回归方法融入GTWR模型框架,提出时空地理加权泊松回归模型(GTWPR),以适用于计数数据的建模和分析,并详细阐述基于局部似然估计的GTWPR模型拟合方法。为验证GTWPR模型的优越性,本文设计了3组模拟试验,结果显示GTWPR模型的拟合精度分别达到0.941、0.794和0.965,表明GTWPR模型在处理计数数据时能够有效刻画时空异质性,显著提升模型结果的准确性。最后,本文基于ZG市格网尺度下财产犯罪数据及其影响机制开展实证分析。结果表明,与地理加权泊松回归模型(GWPR)相比,GTWPR模型的拟合精度显著提升,该结果不仅验证了GTWPR模型在处理计数数据与时空异质性特征方面的显著优势,也体现了其解决实际问题的能力。综上,本文提出的GTWPR模型为犯罪学、公共卫生和交通安全等领域的计数数据应用提供了有力的统计工具,有助于揭示复杂时空数据中蕴含的深层次规律和机制。
中图分类号:
吴超, 梁咏翔, 岳瀚, 崔远政, 黄波. 面向计数数据的时空地理加权泊松回归模型[J]. 测绘学报, 2025, 54(11): 2026-2039.
Chao WU, Yongxiang LIANG, Han YUE, Yuanzheng CUI, Bo HUANG. Geographically and temporally weighted Poisson regression for count data[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2026-2039.
| [1] | 戴劭勍, 江辉仙, 李佳佳, 等. H市城区步行环境对两抢一盗警情的影响[J]. 地理科学, 2018, 38(8): 1235-1244. |
| DAI Shaoqing, JIANG Huixian, LI Jiajia, et al. Influence of walking environment on robbery, snatch and theft crime in urban area, H city, China[J]. Scientia Geographica Sinica, 2018, 38(8): 1235-1244. | |
| [2] | ZHOU Xizhen, DING Xueqi, YAN Jie, et al. Spatial heterogeneity of urban illegal parking behavior: a geographically weighted Poisson regression approach[J]. Journal of Transport Geography, 2023, 110: 103636. |
| [3] | 裴玮来, 周仕勇, 庄建仓, 等. 统计地震学在地震危险性概率预测方法研究中的应用与讨论[J]. 中国科学:地球科学, 2021, 51(12): 2035-2047. |
| PEI Weilai, ZHOU Shiyong, ZHUANG Jiancang, et al. Application and discussion of statistical seismology in probabilistic seismic hazard assessment studies[J]. Scientia Sinica (Terrae), 2021, 51(12): 2035-2047. | |
| [4] | SHEN Fengbei, XU Chengdong, WANG Jinfeng, et al. Poisson means of stratified nonhomogeneity: a new method to predict spatial counts[J/OL]. International Journal of Geographical Information Science. [2025-08-05]. https://doi.org/10.1080/13658816.2025.2536505. |
| [5] | SACHDEVA M, FOTHERINGHAM A S, LI Ziqi, et al. On the local modeling of count data: multiscale geographically weighted Poisson regression[J]. International Journal of Geographical Information Science, 2023, 37(10): 2238-2261. |
| [6] | DARNAH . Modelling of filariasis in East Java with Poisson regression and generalized Poisson regression models[C]//Proceedings of 2016 Symposium on Biomathematics. Bandung: AIP Publishing, 2016. |
| [7] | SELLERS K F, SHMUELI G. A flexible regression model for count data[J]. The Annals of Applied Statistics, 2010, 4(2): 943-961. |
| [8] | ZAMANI H, FAROUGHI P, ISMAIL N. Estimation of count data using mixed Poisson, generalized Poisson and finite Poisson mixture regression models[C]//Proceedings of 2014 International Conference on Mathematical Sciences. Kuala Lumpur: AIP Publishing, 2014: 1144-1150. |
| [9] | MUFUDZA C, EROL H. Poisson mixture regression models for heart disease prediction[J]. Computational and Mathematical Methods in Medicine, 2016, 2016: 4083089. |
| [10] | NAKAYA T, FOTHERINGHAM A S, BRUNSDON C, et al. Geographically weighted Poisson regression for disease association mapping[J]. Statistics in Medicine, 2005, 24(17): 2695-2717. |
| [11] | 刘宁, 邹滨, 张鸿辉. 地理加权回归建模结果不确定性度量与约束方法[J]. 测绘学报, 2023, 52(2): 307-317. DOI: 10.11947/j.AGCS.2023.20210336. |
| LIU Ning, ZOU Bin, ZHANG Honghui. Uncertainty measuring and constraining method for geographic weighted regression model results[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 307-317. DOI: 10.11947/j.AGCS.2023.20210336. | |
| [12] | 赵阳阳, 刘纪平, 徐胜华, 等. 一种基于半监督学习的地理加权回归方法[J]. 测绘学报, 2017, 46(1): 123-129. DOI: 10.11947/j.AGCS.2017.20150470. |
| ZHAO Yangyang, LIU Jiping, XU Shenghua, et al. A geographic weighted regression method based on semi-supervised learning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 123-129. DOI: 10.11947/j.AGCS.2017.20150470. | |
| [13] | FOTHERINGHAM A S, YANG Wenbai, KANG Wei. Multiscale geographically weighted regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6): 1247-1265. |
| [14] | LI Zhibin, WANG Wei, LIU Pan, et al. Using geographically weighted Poisson regression for county-level crash modeling in California[J]. Safety Science, 2013, 58: 89-97. |
| [15] | 叶健, 胡鑫, 徐鸿蒙, 等. 多尺度GTWR城市住宅价格建模与分析[J]. 测绘学报, 2021, 50(9): 1266-1274. DOI: 10.11947/j.AGCS.2021.20210010. |
| YE Jian, HU Xin, XU Hongmeng, et al. Modeling and analysis of urban housing price models based on multiscale geographically and temporally weighted regression[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1266-1274. DOI: 10.11947/j.AGCS.2021.20210010. | |
| [16] | HADAYEGHI A, SHALABY A S, PERSAUD B N. Development of planning level transportation safety tools using geographically weighted Poisson regression[J]. Accident Analysis & Prevention, 2010, 42(2): 676-688. |
| [17] | 毕圣贤, 别思羽, 张辉国, 等. 基于时空加权泊松回归模型的全国布鲁氏菌病分布特征与影响因素分析[J]. 中国卫生统计, 2022, 39(3): 405-408. |
| BI Shengxian, BIE Siyu, ZHANG Huiguo, et al. Analysis of the distribution characteristics and influencing factors of brucellosis in China based on spatial-temporal weighted Poisson regression model[J]. Chinese Journal of Health Statistics, 2022, 39(3): 405-408. | |
| [18] | 孙舒曼, 李智明, 张辉国, 等. 2011—2016年中国艾滋病疫情时空特征分析[J]. 中华疾病控制杂志, 2018, 22(12): 1207-1210, 1215. |
| SUN Shuman, LI Zhiming, ZHANG Huiguo, et al. Temporal-spatial characteristic analysis of AIDS/HIV epidemic during 2011—2016 in China[J]. Chinese Journal of Disease Control & Prevention, 2018, 22(12): 1207-1210, 1215. | |
| [19] | 范勇强, 胡永仕, 范勇迎, 等. 城市时空特性停车泊位需求影响分析[J]. 武汉理工大学学报(交通科学与工程版), 2023, 47(1): 25-30, 36. |
| FAN Yongqiang, HU Yongshi, FAN Yongying, et al. Analysis on the impact of urban space-time characteristics on parking berth demand[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2023, 47(1): 25-30, 36. | |
| [20] | ZHANG Zhi, MEI Ruochen, MEI Changlin. Estimation and inference of multi-effect generalized geographically and temporally weighted regression models[J]. Spatial Statistics, 2024, 64: 100861. |
| [21] | YU Hanchen. Generalized geographically and temporally weighted regression[J]. Computers, Environment and Urban Systems, 2025, 117: 102244. |
| [22] | FOTHERINGHAM A S, CRESPO R, YAO Jing. Geographical and temporal weighted regression (GTWR)[J]. Geographical Analysis, 2015, 47(4): 431-452. |
| [23] | HUANG Bo, WU Bo, BARRY M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 2010, 24(3): 383-401. |
| [24] | FOTHERINGHAM A S, BRUNSDON C F, CHARLTON M E. Geographically weighted regression: the analysis of spatially varying relationships[M]. Chichester: Wiley, 2002. |
| [25] | 覃文忠. 地理加权回归基本理论与应用研究[D]. 上海: 同济大学, 2007. |
| QIN Wenzhong. The basic theoretics and application research on geographically weighted regression[D]. Shanghai: Tongji University, 2007. | |
| [26] | FU Qingyang, ZHOU Mengjie, LI Yige, et al. Flow spatiotemporal Moran's I: measuring the spatiotemporal autocorrelation of flow data[J]. Geographical Analysis, 2024, 56(4): 799-824. |
| [27] | MURAKAMI D, TSUTSUMIDA N, YOSHIDA T, et al. Alinearization for stable and fast geographically weighted Poisson regression[J]. International Journal of Geographical Information Science, 2023, 37(8): 1818-1839. |
| [28] | DA SILVA A R, RODRIGUES T C V. Geographically weighted negative binomial regression: incorporating overdispersion[J]. Statistics and Computing, 2014, 24(5): 769-783. |
| [29] | BRUNSDON C, FOTHERINGHAM A S, CHARLTON M. Geographically weighted summary statistics: a framework for localised exploratory data analysis[J]. Computers, Environment and Urban Systems, 2002, 26(6): 501-524. |
| [30] | WU Chao, REN Fu, HU Wei, et al. Multiscale geographically and temporally weighted regression: exploring the spatiotemporal determinants of housing prices[J]. International Journal of Geographical Information Science, 2019, 33(3): 489-511. |
| [31] | 赵阳阳, 张小璐, 张福浩, 等. 一种局部多项式时空地理加权回归方法[J]. 测绘学报, 2018, 47(5): 663-671. DOI: 10.11947/j.AGCS.2018.20170674. |
| ZHAO Yangyang, ZHANG Xiaolu, ZHANG Fuhao, et al. A local polynomial geographically and temporally weight regression[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 663-671. DOI: 10.11947/j.AGCS.2018.20170674. | |
| [32] | YUE Han, LIU Lin, XIAO Luzi. Investigating the effect of people on the street and streetscape physical environment on the location choice of street theft crime offenders using street view images and a discrete spatial choice model[J]. Applied Geography, 2023, 157: 103025. |
| [33] | 林逸航, 郑坤, 夏书豪, 等. 融合区域空间相似性特征与事件时空特征的犯罪预测模型[J/OL]. 武汉大学学报(信息科学版). [2024-12-01]. https://doi.org/10.13203/j.whugis20230395. |
| LIN Yihang, ZHENG Kun, XIA Shuhao, et al. A crime prediction model incorporating regional spatial similarity characteristics and spatio temporal characteristics of events[J/OL]. Geomatics and Information Science of Wuhan University. [2024-12-01]. https://doi.org/10.13203/j.whugis20230395. | |
| [34] | 柳林, 梁斯毅, 宋广文. 基于潜在受害者动态时空分布的街面接触型犯罪研究[J]. 地球信息科学学报, 2020, 22(4): 887-897. |
| LIU Lin, LIANG Siyi, SONG Guangwen. Explaining street contact crime based on dynamic spatio-temporal distribution of potential targets[J]. Journal of Geo-information Science, 2020, 22(4): 887-897. | |
| [35] | 肖露子, 柳林, 宋广文, 等. 基于理性选择理论的社区环境对入室盗窃的影响研究[J]. 地理研究, 2017, 36(12): 2479-2491. |
| XIAO Luzi, LIU Lin, SONG Guangwen, et al. Impacts of community environment on residential burglary based on rational choice theory[J]. Geographical Research, 2017, 36(12): 2479-2491. | |
| [36] | COHEN L E, FELSON M. Social change and crime rate trends: a routine activity approach[J]. American Sociological Review, 1979, 44(4): 588-608. |
| [37] | BOGOMOLOV A, LEPRI B, STAIANO J, et al. Moves on the street: classifying crime hotspots using aggregated anonymized data on people dynamics[J]. Big Data, 2015, 3(3): 148-158. |
| [1] | 赵学胜, 谢文澜, 孙文彬. 空间格网互操作的研究进展与关键问题[J]. 测绘学报, 2025, 54(10): 1727-1740. |
| [2] | 高凡, 路威, 甘麟露, 章繁, 荣凤娟, 汤士涵. 智能驱动的并行地理计算引擎框架[J]. 测绘学报, 2025, 54(10): 1877-1892. |
| [3] | 吴浩宇, 朱庆, 丁雨淋, 鲍榴, 刘利. 数据模型知识协同驱动的隧道围岩高精度数字孪生建模方法[J]. 测绘学报, 2025, 54(10): 1893-1906. |
| [4] | 郝彧露. 时空数据驱动的城市区域火灾风险评估预测模型及应用[J]. 测绘学报, 2025, 54(10): 1910-1910. |
| [5] | 张付兵, 孙群, 徐青, 马京振, 黄文君, 陈若虚. 随机森林和图神经网络支持下的河系自动分级与选取方法[J]. 测绘学报, 2025, 54(9): 1697-1711. |
| [6] | 孟妮娜, 李凤梅, 周校东. 数据与认知双驱动的建筑物群制图综合结果与尺度一致性识别[J]. 测绘学报, 2025, 54(7): 1318-1331. |
| [7] | 王亚青, 王中辉. 异构图卷积网络支持下的河系自动选取方法[J]. 测绘学报, 2025, 54(7): 1332-1345. |
| [8] | 高晓蓉. 顾及几何和语义相似的居民地自动综合方法[J]. 测绘学报, 2025, 54(7): 1346-1346. |
| [9] | 吴华意, 董广胜, 李锐. 虚拟轨迹:概念特征和研究框架[J]. 测绘学报, 2025, 54(6): 967-981. |
| [10] | 安晓亚, 郭伟茹, 张鹏鑫, 李欣欣, 石磊. 顾及几何位置和移动特征相似性的船舶轨迹聚类方法[J]. 测绘学报, 2025, 54(6): 1107-1121. |
| [11] | 张瑞鑫, 徐青, 吕峥, 张过, 初霞, 程祥. 基于高斯混合回归与改进A*算法的时间最优路径规划方法[J]. 测绘学报, 2025, 54(6): 1139-1151. |
| [12] | 郭仁忠, 贺彪, 赵志刚, 李晓明, 蒯希, 林浩嘉, 陈业滨, 马丁. 智慧城市逻辑架构与孪生平台技术需求[J]. 测绘学报, 2025, 54(5): 777-784. |
| [13] | 贺彪, 郭仁忠, 徐海, 蒯希, 林浩嘉, 赵志刚. 智慧城市操作系统的概念及技术体系[J]. 测绘学报, 2025, 54(5): 785-794. |
| [14] | 石岩, 李诗逸, 王达, 邓敏, 汤仲安. 顾及空间邻域效应的多元地理要素因果模式挖掘方法[J]. 测绘学报, 2025, 54(5): 937-949. |
| [15] | 焦凤伟, 向隆刚, 邓媛媛, 陈欣, 吴华意. 轨迹局部和长序特征结合的立交桥路网构建方法[J]. 测绘学报, 2025, 54(5): 950-962. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||