测绘学报 ›› 2025, Vol. 54 ›› Issue (11): 2026-2039.doi: 10.11947/j.AGCS.2025.20240502

• 地图学与地理信息 • 上一篇    

面向计数数据的时空地理加权泊松回归模型

吴超1,2,3(), 梁咏翔1, 岳瀚4, 崔远政5,6, 黄波7()   

  1. 1.南京邮电大学物联网学院,江苏 南京 210023
    2.南京师范大学地理科学学院,江苏 南京 210023
    3.虚拟地理环境教育部重点实验室(南京师范大学),江苏 南京 210023
    4.广州大学地理科学与遥感学院公共安全地理信息分析中心,广东 广州 510006
    5.中国科学院南京地理与湖泊研究所,江苏 南京 211135
    6.湖泊与流域水安全全国重点实验室,江苏 南京 211135
    7.香港大学地理系,香港 999077
  • 收稿日期:2024-12-10 修回日期:2025-09-23 发布日期:2025-12-15
  • 通讯作者: 黄波 E-mail:chaowu@njupt.edu.cn;bohuang@hku.hk
  • 作者简介:吴超(1992—),女,博士,副教授,研究方向为时空数据分析与建模。E-mail:chaowu@njupt.edu.cn
  • 基金资助:
    国家自然科学基金(42571485);国家重点研发计划(2022YFB3903700)

Geographically and temporally weighted Poisson regression for count data

Chao WU1,2,3(), Yongxiang LIANG1, Han YUE4, Yuanzheng CUI5,6, Bo HUANG7()   

  1. 1.School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
    2.School of Geography, Nanjing Normal University, Nanjing 210023, China
    3.Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
    4.Center of GeoInformatics for Public Security, School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
    5.Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China
    6.State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing 211135, China
    7.Department of Geography, The University of Hong Kong, Hong Kong 999077, China
  • Received:2024-12-10 Revised:2025-09-23 Published:2025-12-15
  • Contact: Bo HUANG E-mail:chaowu@njupt.edu.cn;bohuang@hku.hk
  • About author:WU Chao (1992—), female, PhD, associate professor, majors in spatio-temporal data analysis and modeling. E-mail: chaowu@njupt.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42571485);The National Key Research and Development Program of China(2022YFB3903700)

摘要:

时空地理加权回归模型(GTWR)作为局部时空统计的核心方法,能够精准且灵活地捕捉数据中的时空异质性。然而,针对诸如犯罪数、病例数和交通事故数等具有非连续性和非正态性特征的计数数据时,传统的基于高斯分布的GTWR模型常面临预测不准确和模型设定不恰当等挑战。因此,本文将泊松回归方法融入GTWR模型框架,提出时空地理加权泊松回归模型(GTWPR),以适用于计数数据的建模和分析,并详细阐述基于局部似然估计的GTWPR模型拟合方法。为验证GTWPR模型的优越性,本文设计了3组模拟试验,结果显示GTWPR模型的拟合精度分别达到0.941、0.794和0.965,表明GTWPR模型在处理计数数据时能够有效刻画时空异质性,显著提升模型结果的准确性。最后,本文基于ZG市格网尺度下财产犯罪数据及其影响机制开展实证分析。结果表明,与地理加权泊松回归模型(GWPR)相比,GTWPR模型的拟合精度显著提升,该结果不仅验证了GTWPR模型在处理计数数据与时空异质性特征方面的显著优势,也体现了其解决实际问题的能力。综上,本文提出的GTWPR模型为犯罪学、公共卫生和交通安全等领域的计数数据应用提供了有力的统计工具,有助于揭示复杂时空数据中蕴含的深层次规律和机制。

关键词: 时空异质性, 计数数据, 泊松回归, 财产犯罪

Abstract:

Geographically and temporally weighted regression model (GTWR) serves as the core method for local spatio-temporal statistics, accurately and flexibly capturing spatio-temporal heterogeneity. However, the traditional Gaussian-based GTWR model encounters issues of inaccurate prediction and improper model setting when dealing with discontinuous and non-normal counting data, including the number of crimes, illnesses and traffic accidents. Therefore, the present study introduces the geographically and temporally weighted Poisson regression model (GTWPR) for modeling and analyzing count data, which integrates the Poisson regression method into the GTWR model framework. A detailed description of the GTWPR fitting method, based on local likelihood estimation, is provided. To validate the superiority of the GTWPR model, three simulation experiments were designed. The results show that the fitting accuracy of the GTWPR model reached 0.941, 0.794, and 0.965, respectively, which fully demonstrates that the GTWPR model effectively captures spatio-temporal heterogeneity and significantly improves the accuracy of modeling results for count data. Finally, an empirical analysis was conducted using property crime data and its influencing factors at the grid level in ZG city. The results indicate that, compared with the geographically weighted Poisson regression model (GWPR), the GTWPR model significantly improved the fitting accuracy. This outcome not only verifies the notable advantages of GTWPR in handling count data and spatio-temporal heterogeneity but also highlights its capability to address practical problems. In summary, the GTWPR model proposed in this study provides solid statistical support for applications of count data in fields such as criminology, public health, and traffic safety, and helps to uncover deeper patterns and mechanisms embedded in complex spatio-temporal data.

Key words: spatio-temporal heterogeneity, count data, Poisson regression, property crime

中图分类号: