测绘学报 ›› 2025, Vol. 54 ›› Issue (11): 2052-2067.doi: 10.11947/j.AGCS.2025.20250183

• 地图学与地理信息 • 上一篇    

基于多智能体层次化协同的地理事件抽取与时空解析

胡鑫1(), 杨学习1,2(), 江一凡1, 王宪彬1, 丁晨3, 谢顾然1, 邓敏1,2,4   

  1. 1.中南大学地球科学与信息物理学院,湖南 长沙 410083
    2.湖南省地理空间信息工程技术研究中心,湖南 长沙 410018
    3.华南师范大学北斗研究院,广东 佛山 528225
    4.江西师范大学地理与环境学院,江西 南昌 330022
  • 收稿日期:2025-04-28 修回日期:2025-10-16 发布日期:2025-12-15
  • 通讯作者: 杨学习 E-mail:225001019@csu.edu.cn;yangxuexi@csu.edu.cn
  • 作者简介:胡鑫(1999—),男,博士生,研究方向为时空知识图谱构建与应用。E-mail:225001019@csu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB3904203);国家自然科学基金(42271485);湖南省自然科学基金(2024JJ1009);中南大学前沿交叉项目(2023QYJC002);江西省双千计划(jxsq2020102062);湖南省地理空间信息工程技术研究中心开放课题(HNGIET2024006)

Hierarchical multi-agent collaboration for geographic event extraction and spatio-temporal parsing

Xin HU1(), Xuexi YANG1,2(), Yifan JIANG1, Xianbin WANG1, Chen DING3, Guran XIE1, Min DENG1,2,4   

  1. 1.School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    2.Hunan Geospatial Information Engineering Technology Research Center, Changsha 410018, China
    3.Beidou Research Institute, South China Normal University, Foshan 528225, China
    4.School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
  • Received:2025-04-28 Revised:2025-10-16 Published:2025-12-15
  • Contact: Xuexi YANG E-mail:225001019@csu.edu.cn;yangxuexi@csu.edu.cn
  • About author:HU Xin (1999—), male, PhD candidate, majors in construction and application of spatio-temporal knowledge graph. E-mail: 225001019@csu.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2022YFB3904203);The National Natural Science Foundation of China(42271485);The Natural Science Foundation of Hunan Province, China(2024JJ1009);The Frontier Interdisciplinary Project of Central South University(2023QYJC002);The Double-Thousand Plan of Jiangxi Province(jxsq2020102062);The Open Project of Hunan Geospatial Information Engineering Technology Research Center(HNGIET2024006)

摘要:

从海量文本中精准捕获与解析地理事件,对于深刻理解现实世界动态变化、构建富含时空语义的时空知识图谱至关重要。然而,描述时空位置的形式多样且内涵模糊,同时领域内高质量标注样本匮乏,这给地理事件信息的准确提取带来了严峻挑战。对此,本文提出一种多智能体层次化协同方法,系统地将大语言模型的推理能力应用于少样本场景下的地理事件抽取与解析任务。本文方法的核心在于构建了一个由主控协调智能体与多个专精子智能体组成的协作框架,主控智能体负责对任务进行自适应分解与调度,专精智能体则专注于地理事件抽取、时间要素解析、空间要素定位及空间位置推理等子任务。在基于DUEE构建的基础数据集和空间推理增强数据集上的试验表明,本文方法在少样本条件下展现出优异的地理事件时空解析性能。其中,本文方法在基础数据集上的空间要素解析(F1@100 m=0.779)与时间要素解析(F1time=0.856)性能,相较于当前最优基线方法分别实现了16.3%与22.1%的显著提升。同时,消融研究也验证了该方法设计的有效性。此外,通过对“7·20郑州特大暴雨”事件相关社交媒体数据的实例分析,进一步证实了本文方法在解析事件时空发展脉络、辅助理解事件演化过程方面的能力。本文研究为面向文本数据的地理事件抽取提供了一种多智能体处理范式,其成果有望为事件驱动的时空知识图谱及地理空间智能提供有力支撑。

关键词: 地理事件, 事件抽取, 时空要素解析, 多智能体, 大语言模型

Abstract:

Accurately extracting and interpreting geographic events from vast amounts of text is critical for understanding real-world dynamics and constructing semantically rich spatio-temporal knowledge graph (STKG). However, the diverse expressions and inherent ambiguities of spatio-temporal information within these texts present significant challenges. To address these challenges, this paper proposes a multi-agent hierarchical collaborative method that systematically applies the reasoning capabilities of large language models (LLMs) to the task of geographic event extraction and parsing in few-shot scenarios. The core of our approach is a collaborative framework consisting of a master agent and multiple specialized sub-agents. The master agent performs adaptive task decomposition and scheduling, while the specialized agents focus on dedicated sub-tasks, including geographic event extraction, temporal element parsing, spatial element localization, and spatial location reasoning. Experiments on both a baseline dataset and a spatial reasoning-enhanced dataset constructed from DUEE demonstrate the method's superior few-shot spatio-temporal parsing capabilities. Specifically, on the baseline dataset, our method attains spatial element parsing performance of F1@100 m=0.779 and temporal element parsing performance of F1time=0.856, yielding absolute improvements of 16.3% and 22.1% over the current state-of-the-art baseline, respectively. Then, Ablation studies further validate the effectiveness of the proposed collaborative framework design. Furthermore, a case study analyzing social media data on the “July 20 heavy rainstorm in Zhengzhou” event illustrates the method's effectiveness in capturing the spatio-temporal progression and enhancing the understanding of event evolution. This study introduces a novel multi-agent processing paradigm for geographic event extraction, offering robust support for the construction of refined STKG and the advancement of event-driven geospatial intelligence.

Key words: geographic event, event extraction, spatio-temporal parsing, multi-agent, large language model

中图分类号: