测绘学报 ›› 2025, Vol. 54 ›› Issue (4): 621-635.doi: 10.11947/j.AGCS.2025.20240468

• 综述 • 上一篇    

大语言模型驱动的GIS分析:方法、应用与展望

吴华意1,2(), 沈张骁1, 侯树洋1(), 梁健源1, 赵安琪1, 矫皓月3, 桂志鹏4, 关雪峰1   

  1. 1.武汉大学测绘遥感信息工程全国重点实验室,湖北 武汉 430079
    2.地球空间信息技术协同创新中心,湖北 武汉 430079
    3.武汉大学资源与环境科学学院,湖北 武汉 430079
    4.武汉大学遥感信息工程学院,湖北 武汉 430079
  • 收稿日期:2024-10-08 发布日期:2025-05-30
  • 通讯作者: 侯树洋 E-mail:wuhuayi@whu.edu.cn;whuhsy@whu.edu.cn
  • 作者简介:吴华意(1966—),男,博士,教授,研究方向为地理信息服务、分析、挖掘和大语言模型。 E-mail:wuhuayi@whu.edu.cn
  • 基金资助:
    国家自然科学基金(41930107)

Large language model-driven GIS analysis: methods, applications, and prospects

Huayi WU1,2(), Zhangxiao SHEN1, Shuyang HOU1(), Jianyuan LIANG1, Anqi ZHAO1, Haoyue JIAO3, Zhipeng GUI4, Xuefeng GUAN1   

  1. 1.State Key Laboratory of Information Engineering in Survey, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
    2.Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China
    3.School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
    4.School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • Received:2024-10-08 Published:2025-05-30
  • Contact: Shuyang HOU E-mail:wuhuayi@whu.edu.cn;whuhsy@whu.edu.cn
  • About author:WU Huayi (1966—), male, PhD, professor, majors in geographic information service, analysis, mining and large language models. E-mail: wuhuayi@whu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(41930107)

摘要:

大语言模型的迅速发展为GIS分析提供了全新路径,并催生了大语言模型驱动的GIS分析技术体系(LLM4GIS)。本文基于截至2024年10月的研究,首先梳理了GIS分析的演进脉络,从应用模式、数据基础和评价方法3个方面总结了LLM4GIS的技术体系,然后归纳了LLM在知识问答、知识抽取、时空推理和分析建模等GIS分析任务中的研究进展,最后针对多模态时空数据协同解析、泛化能力与垂直深度平衡、可解释性与可信度提升、具身智能与端侧智能转型以及GIS分析智能化与普适化5个方面,展望了GIS4LLM的未来研究方向,为实现LLM4GIS与GIS4LLM的双向赋能提供启发。

关键词: 大语言模型, GIS分析, 提示工程, 检索增强生成, 微调, 智能体, LLM4GIS, GIS4LLM

Abstract:

The rapid development of large language models (LLMs) provide a new approach for GIS analysis, leading to the large language model-driven GIS analysis technical architecture (LLM4GIS). Based on the latest research up to October 2024, this paper reviews the evolution of GIS analysis and summarizes the LLM4GIS technical architecture from 3 aspects: application modes, datasets and evaluation methods. It also summarizes the research progress of LLM in GIS analysis tasks such as knowledge question-answering, knowledge extraction, spatiotemporal reasoning, and analyzing and modeling. Finally, the paper prospects the future research directions of GIS4LLM in 5 aspects: collaborative understanding of multimodal spatio-temporal data, balancing generalization with depth, enhancing interpretability and credibility, transitioning to embodied intelligence and edge intelligence, and the development of intelligent and universal GIS analysis. This paper provides inspiration for achieving mutual empowerment between LLM4GIS and GIS4LLM.

Key words: large language model, GIS analysis, prompt engineering, retrieval-augmented generation, fine-tuning, agent, LLM4GIS, GIS4LLM

中图分类号: