测绘学报 ›› 2025, Vol. 54 ›› Issue (12): 2262-2275.doi: 10.11947/j.AGCS.2025.20250162

• 地图学与地理信息 • 上一篇    下一篇

面向匹配优化的多源建筑物实体级保形空间对齐模型

邱越(), 武芳(), 翟仁健, 钱海忠, 黄哲琨, 李博   

  1. 信息工程大学地理空间信息学院,河南 郑州 450001
  • 收稿日期:2025-04-16 修回日期:2025-11-01 出版日期:2026-01-15 发布日期:2026-01-15
  • 通讯作者: 武芳 E-mail:qiuyue@whu.edu.cn;wufang_630@126.com
  • 作者简介:邱越(1997—),男,博士生,研究方向为地理空间数据智能处理。 E-mail:qiuyue@whu.edu.cn
  • 基金资助:
    国家自然科学基金(42201491; 42271463; 42301521)

An entity-level conformal spatial alignment model for multi-source building matching optimization

Yue QIU(), Fang WU(), Renjian ZHAI, Haizhong QIAN, Zhekun HUANG, Bo LI   

  1. Institute of Geospatial Information, University of Information Engineering, Zhengzhou 450001, China
  • Received:2025-04-16 Revised:2025-11-01 Online:2026-01-15 Published:2026-01-15
  • Contact: Fang WU E-mail:qiuyue@whu.edu.cn;wufang_630@126.com
  • About author:QIU Yue (1997—), male, PhD candidate, majors in intelligent geospatial data processing. E-mail: qiuyue@whu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42201491; 42271463; 42301521)

摘要:

多源建筑物矢量数据的精确匹配与融合对城市空间分析与应用至关重要,然而其普遍存在的空间位置不一致性构成了主要技术瓶颈,严重制约匹配精度与数据融合质量。现有空间对齐方法或陷入“先匹配后对齐”的循环依赖困境,无法从根本上改善匹配条件;或采用全局/局部变换模型,难以精细校正实体级非线性偏差,且常因引入几何形变而干扰后续基于形态的匹配判据。针对上述局限,本文提出一种面向匹配优化的多源建筑物实体级保形空间对齐模型,采用“矢量-栅格-矢量”协同工作流,在匹配流程前独立执行:首先,提取建筑物质心构建Delaunay三角网以表征空间结构,并将其栅格化;其次,在栅格域运用全局-局部渐进式特征匹配策略,高效识别高置信度同名点对;然后,基于可靠同名点构建连续精细的位移场,且关键在于,利用该位移场驱动每个源建筑物多边形进行整体刚性平移,在精确校正位置偏差的同时严格保持其固有几何形状;最后,结合拓扑冲突检测与消解机制确保空间有效性。试验结果表明,本文方法显著改善了多源数据的空间一致性,平均Hausdorff距离相对减小18.23%,并使多种下游匹配算法的F1值分别获得1.09至6.65个百分点不等的绝对提升量。试验证实了本文方法作为一种高效的预处理策略,在提升多源建筑物矢量数据匹配精度与融合质量方面的有效性与应用潜力。

关键词: 建筑物匹配, 空间对齐, 矢量数据, 位移场, 矢量-栅格-矢量, 空间校正

Abstract:

Accurate matching and integration of multi-source building vector data are crucial for urban spatial analysis and applications. However, the prevalent spatial inconsistency significantly hinders matching accuracy and data fusion quality. Existing spatial alignment methods either adopt a “matching-then-alignment” pipeline that suffers from a circular dependency between alignment quality and matching accuracy and thus fails to fundamentally improve matching conditions, or utilize global/local transformation models that struggle to accurately correct entity-level nonlinear distortions and often introduce geometric deformations that interfere with subsequent morphology-based matching criteria. To address these limitations, this paper proposes a novel entity-level conformal spatial alignment model for multi-source building matching optimization, employing an innovative “vector-raster-vector” collaborative workflow. This approach independently executes prior to the matching process: first, it extracts building centroids to construct a Delaunay triangulation representing spatial structures and rasterizes it; second, it applies a global-local progressive feature matching strategy in the raster domain to efficiently identify high-confidence corresponding points; subsequently, it constructs a continuous displacement field based on reliable correspondences. Crucially, this displacement field drives each source building polygon to undergo an overall rigid translation, accurately correcting positional deviations while strictly preserving their inherent geometric shapes, ultimately ensuring spatial validity through topological conflict detection and resolution mechanisms. Experimental results demonstrate that this method significantly enhances spatial consistency among multi-source data, with an average Hausdorff distance reduction of 18.23% and substantial improvements in F1 scores ranging from 1.09 to 6.65 percentage points across various downstream matching algorithms. The experiments confirm the effectiveness and application potential of this method as a preprocessing strategy for enhancing the accuracy and quality of multi-source building vector data matching and integration.

Key words: building matching, spatial alignment, vector data, displacement field, vector-raster-vector, spatial correction

中图分类号: