测绘学报 ›› 2025, Vol. 54 ›› Issue (10): 1877-1892.doi: 10.11947/j.AGCS.2025.20250127

• 地图学与地理信息 • 上一篇    下一篇

智能驱动的并行地理计算引擎框架

高凡1(), 路威1(), 甘麟露1, 章繁1, 荣凤娟1, 汤士涵2   

  1. 1.陆军工程大学通信工程学院,江苏 南京 210007
    2.南京师范大学地理科学学院,江苏 南京 210023
  • 收稿日期:2025-03-24 修回日期:2025-08-24 出版日期:2025-11-14 发布日期:2025-11-14
  • 通讯作者: 路威 E-mail:fgao@aeu.edu.cn;wlu@aeu.edu.cn
  • 作者简介:高凡(1994—),男,博士,讲师,研究方向为高性能地理计算和地理边缘计算。 E-mail:fgao@aeu.edu.cn
  • 基金资助:
    国家自然科学基金(42301489);江苏省自然科学基金(BK20231030)

An intelligent parallel geocomputation engine framework

Fan GAO1(), Wei LU1(), Linlu GAN1, Fan ZHANG1, Fengjuan RONG1, Shihan TANG2   

  1. 1.Institute of Communication Engineering, Army Engineering University, Nanjing 210007, China
    2.School of Geography, Nanjing Normal University, Nanjing 210023, China
  • Received:2025-03-24 Revised:2025-08-24 Online:2025-11-14 Published:2025-11-14
  • Contact: Wei LU E-mail:fgao@aeu.edu.cn;wlu@aeu.edu.cn
  • About author:GAO Fan (1994—), male, PhD, lecturer, majors in high-performance geocomputation and edge computing. E-mail: fgao@aeu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42301489);Jiangsu Natural Science Foundation of China(BK20231030)

摘要:

地理空间计算特征的捕捉与强度预测是高性能地理计算领域中的核心问题,也是智能计算范式下的关键。经验知识驱动的研究范式存在难推广、难建模、低精度的问题,易造成负载失衡和资源浪费。因此,本文以“智”驱“计”,整合地理计算元智能、感知智能、认知智能,提出一种智能驱动的并行地理计算引擎框架。在元智能层级,从形态结构、集合数量、空间分布和拓扑关联特征出发,构建了通用的地理空间计算域特征表达空间。在感知智能层级,引入定制化的机器学习和深度学习模型,支持地理空间域计算强度自动感知。在认知智能层级,提出了结合大强度任务优先和任务窃取的自适应动态调度策略。以多边形空间相交和可视域分析为例,验证了智能化并行地理计算引擎框架的可行性和高效性,结果表明本文方法在负载均衡性能上提升了20倍以上。

关键词: 地理计算, 智能计算, 空间计算特征, 空间计算强度, 负载均衡

Abstract:

The capture of spatial computational features and the prediction of their intensity are pivotal challenges in the field of high-performance geocomputation and are crucial under the paradigm of intelligent computing. Traditional expert knowledge-driven research paradigms are limited in scalability, modeling complexity, and accuracy, leading to load imbalance and resource wastage. Addressing these issues, this paper introduces an intelligent parallel geocomputation engine framework, synergizing meta-intelligence, perceptual intelligence, and cognitive intelligence in geocomputation. At the meta-intelligence level, a universal feature representation space for spatial computational domains is constructed, considering morphological structures, set quantities, spatial distributions, and topological relationships. The perceptual intelligence level incorporates customized machine learning and deep learning models to enable automatic perception of computational intensity in geospatial domains. At the cognitive intelligence level, an adaptive dynamic scheduling strategy is proposed, combining high-intensity task prioritization and task stealing. The efficacy and efficiency of the intelligent parallel geocomputation engine are validated through two cases, including polygon intersection and viewshed analysis, demonstrating a more than 20-fold improvement in load balancing performance.

Key words: geocomputation, intelligent computing, spatial computational features, spatial computational intensity, load balance

中图分类号: