测绘学报 ›› 2024, Vol. 53 ›› Issue (12): 2375-2390.doi: 10.11947/j.AGCS.2024.20230355
• 摄影测量学与遥感 • 上一篇
赵金奇1,2(), 李宇轩1, 刘子蓉1,2(
), 安庆3, 宋时雨1, 牛玉芬4
收稿日期:
2023-08-24
发布日期:
2025-01-06
通讯作者:
刘子蓉
E-mail:masurq@cumt.edu.cn;liuzirong2003@163.com
作者简介:
赵金奇(1990—),男,副教授,研究方向为合成孔径雷达智能解译及应用。E-mail:masurq@cumt.edu.cn
基金资助:
Jinqi ZHAO1,2(), Yuxuan LI1, Zirong LIU1,2(
), Qing AN3, Shiyu SONG1, Yufen NIU4
Received:
2023-08-24
Published:
2025-01-06
Contact:
Zirong LIU
E-mail:masurq@cumt.edu.cn;liuzirong2003@163.com
About author:
ZHAO Jinqi (1990—), male, associate professor, majors in synthetic aperture radar intelligent interpretation and its applications. E-mail: masurq@cumt.edu.cn
Supported by:
摘要:
合成孔径雷达(synthetic aperture radar,SAR)具备全天时、全天候的观测优势,能够在恶劣环境下进行洪涝监测。现有洪涝变化检测方法易受其他地物变化影响且对SAR数据特性针对性不强。针对以上问题,本文提出了一种基于相似性衡量函数优化的SAR时空极化信息一体化洪涝的变化检测方法。该方法融合多时相、多极化信息,构建“时-空-极化”SAR数据,并对K-means聚类方法进行改进,通过一体化处理减少先聚类后变化检测的误差累积;进一步顾及“时-空-极化”SAR影像数据特性,引入交叉熵对相似性衡量函数进行优化,能够对由于洪涝引起的水体变化进行准确区分。最后,利用武汉市全极化Radarsat-2数据和黄冈市黄梅县双极化Sentinel-1数据对本文方法的有效性进行试验,试验结果表明,本文方法在武汉两个试验区中虚警率(false alarm,FA)、总体错误率(total errors,TE)、总体正确率(overall accuracy,OA)和卡帕系数(Kappa)4个精度评价指标均优于其他对比方法,分别为5.06%、5.66%、94.34%、0.69,以及1.61%、2.61%、97.39%、0.65;在黄梅县的试验结果中TE、OA和Kappa表现最优,分别为1.67%,98.33%和0.73。本文方法可以有效抑制其他地物变化对洪涝变化检测的影响。同时具有较快的响应速度,且能够有效抑制城市变化和山区阴影对洪涝检测的影响。
中图分类号:
赵金奇, 李宇轩, 刘子蓉, 安庆, 宋时雨, 牛玉芬. 基于相似性衡量函数优化的SAR时空极化信息一体化洪涝变化检测方法[J]. 测绘学报, 2024, 53(12): 2375-2390.
Jinqi ZHAO, Yuxuan LI, Zirong LIU, Qing AN, Shiyu SONG, Yufen NIU. Flood change detection method using optimized similarity measurement function with temporal-spatial-polarized SAR information[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2375-2390.
表3
不同“时-空-极化”数据的洪涝检测结果精度评价"
数据类别 | 严东湖 | 严西湖 | ||||||
---|---|---|---|---|---|---|---|---|
FA/(%) | TE/(%) | OA/(%) | Kappa | FA/(%) | TE/(%) | OA/(%) | Kappa | |
HH | 5.64 | 8.51 | 91.49 | 0.49 | 0.88 | 3.34 | 96.66 | 0.40 |
HV | 7.97 | 8.97 | 91.03 | 0.54 | 10.66 | 11.66 | 88.34 | 0.24 |
VV | 4.73 | 7.67 | 92.33 | 0.51 | 0.20 | 2.83 | 97.17 | 0.41 |
HH+HV | 5.28 | 6.92 | 93.08 | 0.60 | 5.80 | 6.67 | 93.33 | 0.41 |
VV+HV | 5.05 | 6.60 | 93.40 | 0.62 | 3.52 | 4.65 | 95.35 | 0.49 |
全极化 | 5.06 | 5.66 | 94.34 | 0.69 | 1.61 | 2.61 | 97.39 | 0.65 |
[1] | YAN Pu, FANG Yue, CHEN Jie, et al. Automated extraction for water bodies using new water index from landsat 8 OLI images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 59-75. |
[2] | 田国珍, 刘新立, 王平, 等. 中国洪水灾害风险区划及其成因分析[J]. 灾害学, 2006, 21(2): 1-6. |
TIAN Guozhen, LIU Xinli, WANG Ping, et al. Flood risk zoning and causal analysis in China[J]. Journal of Catastrophology, 2006, 21(2): 1-6. | |
[3] | 刘彤, 闫天池. 我国的主要气象灾害及其经济损失[J]. 自然灾害学报, 2011, 20(2): 90-95. |
LIU Tong, YAN Tianchi. Main meteorological disasters in China and their economic losses[J]. Journal of Natural Disasters, 2011, 20(2): 90-95. | |
[4] |
赵金奇. 多时相极化SAR影像变化检测方法研究[J]. 测绘学报, 2019, 48(4): 536. DOI:.
doi: 10.11947/J.AGCS.2019.20180281 |
ZHAO Jinqi. Research on change detection method in multi-temporal polarimetric SAR imagery[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4): 536. DOI:.
doi: 10.11947/J.AGCS.2019.20180281 |
|
[5] | CHEN Zhanlong, LI Shuangjiang, XU Yongyang, et al. Correg-Yolov3: a method for dense buildings detection in high-resolution remote sensing images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2): 51-61. |
[6] | 眭海刚, 赵博飞, 徐川, 等. 多模态序列遥感影像的洪涝灾害应急信息快速提取[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1441-1449. |
SUI Haigang, ZHAO Bofei, XU Chuan, et al. Rapid extraction of flood disaster emergency information with multi-modal sequence remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1441-1449. | |
[7] | SUN Sun, WU Tao, SUN Sun, et al. Object detection research of SAR image using improved faster region-based convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 18-28. |
[8] | 李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1): 148-166. |
Li Shutao, Li Congyu, Kang Xudong. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1): 148-166. | |
[9] | 李丹, 吴保生, 陈博伟, 等. 基于卫星遥感的水体信息提取研究进展与展望[J]. 清华大学学报(自然科学版), 2020, 60(2): 147-161. |
LI Dan, WU Baosheng, CHEN Bowei, et al. Review of water body information extraction based on satellite remote sensing[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(2): 147-161. | |
[10] | 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018, 43(12): 1885-1898. |
SUI Haigang, FENG Wenqing, LI Wenzhuo, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1885-1898. | |
[11] | 公茂果, 苏临之, 李豪, 等. 合成孔径雷达影像变化检测研究进展[J]. 计算机研究与发展, 2016, 53(1): 123-137. |
GONG Maoguo, SU Linzhi, LI Hao, et al. A survey on change detection in synthetic aperture radar imagery[J]. Journal of Computer Research and Development, 2016, 53(1): 123-137. | |
[12] | WANG Min, WANG Peidong. CFM-UNet: a joint CNN and transformer network via cross feature modu-lation for remote sensing images segmentation[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(4): 40-47. |
[13] | ZHANG Kaiyu, LÜ Xiaolei, GUO Bin, et al. Unsupervised SAR image change detection based on histogram fitting error minimization and convolutional neural network[J]. Remote Sensing, 2023, 15(2): 470. |
[14] | DONG Zhen, LIANG Zifan, WANG Guojie, et al. Mapping inundation extents in Poyang Lake area using Sentinel-1 data and transformer-based change detection method[J]. Journal of Hydrology, 2023, 620: 129455. |
[15] |
张鑫龙, 陈秀万, 李飞, 等. 高分辨率遥感影像的深度学习变化检测方法[J]. 测绘学报, 2017, 46(8): 999-1008. DOI:.
doi: 10.11947/J.AGCS.2017.20170036 |
ZHANG Xinlong, CHEN Xiuwan, LI Fei, et al. Change detection method for high resolution remote sensing images using deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8): 999-1008. DOI:.
doi: 10.11947/J.AGCS.2017.20170036 |
|
[16] | ZHANG Yun. Smart photogrammetric and remote sensing image processing for very high resolution optical images— examples from the CRC-AGIP lab at UNB[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 17-26. |
[17] | 冷英, 李宁. 一种改进的变化检测方法及其在洪水监测中的应用[J]. 雷达学报, 2017, 6(2): 204-212. |
LENG Ying, LI Ning. Improved change detection method for flood monitoring[J]. Journal of Radars, 2017, 6(2): 204-212. | |
[18] | LIU Liu, JI Xinyuan, LIU Liu, et al. A novel unsupervised change detection method with structure consistency and GFLICM based on UAV images[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 91-102. |
[19] | BAN Yifang, YOUSIF O A. Multitemporal spaceborne SAR data for urban change detection in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(4): 1087-1094. |
[20] | INGLADA J, MERCIER G. A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5): 1432-1445. |
[21] | GONG Maoguo, CAO Yu, WU Qiaodi. A neighborhood-based ratio approach for change detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 307-311. |
[22] | 刘本强, 赵争, 魏钜杰. 一种利用邻域相对熵的SAR影像变化检测方法[J]. 遥感信息, 2018, 33(3): 91-97. |
LIU Benqiang, ZHAO Zheng, WEI Jujie. A method of SAR image change detection based on relative entropy within neighborhood[J]. Remote Sensing Information, 2018, 33(3): 91-97. | |
[23] | CONRADSEN K, NIELSEN A A, SKRIVER H. Determining the points of change in time series of polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 3007-3024. |
[24] | GAO Gui, LIU Li, ZHAO Lingjun, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697. |
[25] | OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. |
[26] | KAPUR J N, SAHOO P K, WONG A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273-285. |
[27] | KITTLER J, ILLINGWORTH J. Minimum error thresholding[J]. Pattern Recognition, 1986, 19(1): 41-47. |
[28] | KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892. |
[29] | CELIK T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 772-776. |
[30] | GONG M, ZHOU Z, MA J. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2141-2151. |
[31] | ZHANG Minghui, LIU Di, WANG Siyuan, et al. Multisource remote sensing data-based flood monitoring and crop damage assessment: a case study on the 20 July 2021 extraordinary rainfall event in Henan, China[J]. Remote Sensing, 2022, 14(22): 5771. |
[32] | AVENDANO J, MORA S F, VERA J E, et al. Flood monitoring and change detection based on unsupervised image segmentation and fusion in multitemporal SAR imagery[C]//Proceedings of the 12th International Conference on Electrical Engineering, Computing Science and Automatic Control. Mexico City: IEEE, 2015: 1-6. |
[33] | ZHANG Zhang, MARINO M, NUNZIATA N, et al. Marine target detection using dual-polarimetric SAR imagery[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 63-69. |
[34] | SEN L J, ERIC P. Polarimetric radar imaging: from basics to applications[M]. Boca Raton: CRC Press, 2009. |
[35] | CONRADSEN K, NIELSEN A, SKRIVER H. Determining the points of change in time series of polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 3007-3024. |
[36] | 张立福, 陈浩, 孙雪剑, 等. 多维遥感数据时空谱一体化存储结构设计[J]. 遥感学报, 2017, 21(1): 62-73. |
ZHANG Lifu, CHEN Hao, SUN Xuejian, et al. Designing spatial-temporal-spectral integrated storage structure of multi-dimensional remote sensing images[J]. Journal of Remote Sensing, 2017, 21(1): 62-73. | |
[37] | SHANNON C. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(1): 379-423. |
[38] |
陈超, 梁锦涛, 杨刚, 等. 面向土地覆盖精准分类的遥感特征参数优选方法[J]. 测绘学报, 2024, 53(7): 1401-1416. DOI:.
doi: 10.11947/J.AGCS.2024.20230327 |
CHEN Chao, LIANG Jintao, YANG Gang, et al. Remote sensing parameters optimization for accurate land cover classifi-cation[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1401-1416. DOI:.
doi: 10.11947/J.AGCS.2024.20230327 |
|
[39] | HARIS K, EFSTRATIADIS S N, MAGLAVERAS N, et al. Hybrid image segmentation using watersheds and fast region merging[J]. IEEE Transactions on Image Processing, 1998, 7(12): 1684-1699. |
[40] | SHI Jianbo, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. |
[41] | YANG Le, SHI Lei, YANG Jie, et al. PolSAR additive noise estimation based on shadow regions[J]. International Journal of Remote Sensing, 2021, 42(1): 259-273. |
[42] | VAN ZYL J, KIM Y. Synthetic aperture radar polarimetry[M]. Hoboken: Wiley, 2011. |
[43] | CARRARA W G, GOODMAN R S, MAJEWSKI R M. Spotlight synthetic aperture radar: signal processing algorithms[M]. Boston: Artech House, 1995. |
[1] | 鄢薪, 慎利, 潘俊杰, 戴延帅, 王继成, 郑晓莉, 李志林. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J]. 测绘学报, 2024, 53(8): 1586-1597. |
[2] | 宁晓刚, 张翰超, 张瑞倩. 遥感影像高可信智能不变检测技术框架与方法实践[J]. 测绘学报, 2024, 53(6): 1098-1112. |
[3] | 顾海燕, 杨懿, 李海涛, 孙立坚, 丁少鹏, 刘世琦. 高分辨率遥感影像样本库动态构建与智能解译应用[J]. 测绘学报, 2024, 53(6): 1165-1179. |
[4] | 彭代锋, 翟晨晨, 周顶蔚, 张永军, 管海燕, 臧玉府. 基于金字塔语义token全局信息增强的高分光学遥感影像变化检测[J]. 测绘学报, 2024, 53(6): 1195-1211. |
[5] | 丁少鹏, 卢秀山, 刘如飞, 杨懿, 顾海燕, 李海涛. 联合目标特征引导与多重注意力的建筑物变化检测[J]. 测绘学报, 2024, 53(6): 1224-1235. |
[6] | 庞世燕, 郝京京, 左志奇, 兰晶晶, 胡翔云. 融合密集连接和自注意力机制的高分辨率遥感影像变化检测方法[J]. 测绘学报, 2024, 53(12): 2244-2253. |
[7] | 韦春桃, 龚成, 周永绪. 一种联合空间约束与差异特征聚合的变化检测网络[J]. 测绘学报, 2023, 52(9): 1538-1547. |
[8] | 王超, 王帅, 陈晓, 李俊勇, 谢涛. 联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测[J]. 测绘学报, 2023, 52(2): 283-296. |
[9] | 姜明, 张新长, 孙颖, 冯炜明, 阮永俭. 全尺度特征聚合的高分辨率遥感影像变化检测网络[J]. 测绘学报, 2023, 52(10): 1738-1748. |
[10] | 叶沅鑫, 孙苗苗, 周亮, 杨超, 刘天逸, 郝思媛. 面向建筑物变化检测的主体边缘分解与重组神经网络[J]. 测绘学报, 2023, 52(1): 71-81. |
[11] | 张祖勋, 姜慧伟, 庞世燕, 胡翔云. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7): 1091-1107. |
[12] | 林珲, 吴贤宇, 潘家祎, 邹海波. 中国城市洪涝实时预报研究:现状与挑战[J]. 测绘学报, 2022, 51(7): 1306-1316. |
[13] | 梁哲恒, 黎宵, 邓鹏, 盛森, 姜福泉. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. |
[14] | 罗卿莉, 崔峰志, 魏钜杰, 明磊. SAR影像变化检测的前景特征流形排序法[J]. 测绘学报, 2022, 51(11): 2365-2378. |
[15] | 王昶, 张永生, 纪松, 张磊. 建筑物变化的多特征融和及随机多图综合检测法[J]. 测绘学报, 2021, 50(2): 235-247. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||