测绘学报 ›› 2024, Vol. 53 ›› Issue (12): 2375-2390.doi: 10.11947/j.AGCS.2024.20230355

• 摄影测量学与遥感 • 上一篇    

基于相似性衡量函数优化的SAR时空极化信息一体化洪涝变化检测方法

赵金奇1,2(), 李宇轩1, 刘子蓉1,2(), 安庆3, 宋时雨1, 牛玉芬4   

  1. 1.中国矿业大学环境与测绘学院,江苏 徐州 221116
    2.自然资源部地理国情监测重点实验室,湖北 武汉 430072
    3.武昌理工学院人工智能学院,湖北 武汉 430223
    4.河北工程大学矿业与测绘工程学院,河北 邯郸 056038
  • 收稿日期:2023-08-24 发布日期:2025-01-06
  • 通讯作者: 刘子蓉 E-mail:masurq@cumt.edu.cn;liuzirong2003@163.com
  • 作者简介:赵金奇(1990—),男,副教授,研究方向为合成孔径雷达智能解译及应用。E-mail:masurq@cumt.edu.cn
  • 基金资助:
    国家自然科学基金(42307255);自然资源部地理国情监测重点实验室开放基金(2023NGCM12);河北省自然科学基金(D2023402033);江苏省双创博士资助项目(JSSCBS20221531)

Flood change detection method using optimized similarity measurement function with temporal-spatial-polarized SAR information

Jinqi ZHAO1,2(), Yuxuan LI1, Zirong LIU1,2(), Qing AN3, Shiyu SONG1, Yufen NIU4   

  1. 1.School of Environment and Spatial informatics, China University of Mining and Technology, Xuzhou 221116, China
    2.Key Laboratory of National Geographic Census Monitoring, Ministry of Natural Resources, Wuhan 430072, China
    3.Artificial Intelligence School, Wuchang University of Technology, Wuhan 430223, China
    4.School of Mining and Geomatics Engineering, Hebei University of Engineering, Handan 056038, China
  • Received:2023-08-24 Published:2025-01-06
  • Contact: Zirong LIU E-mail:masurq@cumt.edu.cn;liuzirong2003@163.com
  • About author:ZHAO Jinqi (1990—), male, associate professor, majors in synthetic aperture radar intelligent interpretation and its applications. E-mail: masurq@cumt.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42307255);Open Fund Project of Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources(2023NGCM12);Hebei Natural Science Foundation(D2023402033);The Jiangsu Provincial Double-Innovation Doctor Program(JSSCBS20221531)

摘要:

合成孔径雷达(synthetic aperture radar,SAR)具备全天时、全天候的观测优势,能够在恶劣环境下进行洪涝监测。现有洪涝变化检测方法易受其他地物变化影响且对SAR数据特性针对性不强。针对以上问题,本文提出了一种基于相似性衡量函数优化的SAR时空极化信息一体化洪涝的变化检测方法。该方法融合多时相、多极化信息,构建“时-空-极化”SAR数据,并对K-means聚类方法进行改进,通过一体化处理减少先聚类后变化检测的误差累积;进一步顾及“时-空-极化”SAR影像数据特性,引入交叉熵对相似性衡量函数进行优化,能够对由于洪涝引起的水体变化进行准确区分。最后,利用武汉市全极化Radarsat-2数据和黄冈市黄梅县双极化Sentinel-1数据对本文方法的有效性进行试验,试验结果表明,本文方法在武汉两个试验区中虚警率(false alarm,FA)、总体错误率(total errors,TE)、总体正确率(overall accuracy,OA)和卡帕系数(Kappa)4个精度评价指标均优于其他对比方法,分别为5.06%、5.66%、94.34%、0.69,以及1.61%、2.61%、97.39%、0.65;在黄梅县的试验结果中TE、OA和Kappa表现最优,分别为1.67%,98.33%和0.73。本文方法可以有效抑制其他地物变化对洪涝变化检测的影响。同时具有较快的响应速度,且能够有效抑制城市变化和山区阴影对洪涝检测的影响。

关键词: 洪涝, 变化检测, 时-空-极化, 扩展K-means聚类, 交叉熵

Abstract:

Thanks to its ability for all-weather and all-day observation, synthetic aperture radar (SAR) enables flood monitoring in harsh environments. Currently, flood change detection methods are easily affected by the changes of other ground objects and designed inadequacy for SAR data characteristics. To solve these problems, a novel change detection method using temporal characteristics and flood characteristic distribution is proposed. The proposed method integrates multi-temporal and multi-polarized information to construct temporal-spatial-polarized SAR data. Furthermore, the improved K-means clustering approach for constructed data reduces accumulated errors from different temporal clustering processing. In addition, considering the distribution characteristics of temporal-spatial-polarized SAR data, Cross Entropy is designed to optimize the similarity measurement function to accurately distinguish water body changes caused by flooding. Finally, multi-temporal fully polarimetric Radarsat-2 data from Wuhan and dual polarimetric Sentinel-1 data from Huangmei County in Huanggang are used to validate the effectiveness of the proposed method. The false alarm rate (FA), total errors rate (TE), overall accuracy (OA), and Kappa of our method in Wuhan applied are 5.06%, 5.66%, 94.34%, 0.69 and 1.61%, 2.61%, 97.39%, 0.65, which highlight the advantages of the proposed method. The TE, OA and Kappa of experimental results in Huangmei County have the best performance, which are 1.67%, 98.33% and 0.73. Our method effectively mitigates the effect of changes in other land features on the detection of changes in water bodies. Furthermore, our method not only effectively reduces the impact of other land cover changes but also boasts a swift response capability. It can effectively suppress the influence of urban changes and mountain shadow in flood detection.

Key words: flood, change detection, temporal-spatial-polarized, improved K-means, cross entropy

中图分类号: