[1] 张志强, 张新长, 辛秦川, 等. 结合像元级和目标级的高分辨率遥感影像建筑物变化检测[J]. 测绘学报, 2018, 47(1): 102-112. DOI: 10.11947/j.AGCS.2018.20170483. ZHANG Zhiqiang, ZHANG Xinchang, XIN Qinchuan, et al. Combining the pixel-based and object-based methods for building change detection using high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 102-112. DOI: 10.11947/j.AGCS.2018.20170483. [2] JI Shunping, SHEN Yanyun, LU Meng, et al. Building instance change detection from large-scale aerial images using convolutional neural networks and simulated samples[J]. Remote Sensing, 2019, 11(11): 1343. [3] 吴纹辉, 慎利, 董新丰, 等. 面向高分辨率遥感影像建筑物变化检测的边缘感知网络[J]. 地理与地理信息科学, 2021, 37(3): 21-28. WU Wenhui, SHEN Li, DONG Xinfeng, et al. Edge sensing network for building change detection in high resolution remote sensing images[J]. Geography and Geo-Information Science, 2021, 37(3): 21-28. [4] JAVED A, JUNG S, LEE W H, et al. Object-based building change detection by fusing pixel-level change detection results generated from morphological building index[J]. Remote Sensing, 2020, 12(18): 2952. [5] WANG Chang, WANG Xu. Building change detection from multi-source remote sensing images based on multi-feature fusion and extreme learning machine[J]. International Journal of Remote Sensing, 2021, 42(6): 2246-2257. [6] 王志盼, 沈彦, 王亮, 等. 单类分类框架下的高分辨率遥感影像建筑物变化检测算法[J]. 武汉大学学报(信息科学版), 2020, 45(10): 1610-1618. WANG Zhipan, SHEN Yan, WANG Liang, et al. High-resolution remote sensing image building change detection based on one-class classifier framework[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1610-1618. [7] 王昶, 张永生, 纪松, 等. 建筑物变化的多特征融和及随机多图综合检测法[J]. 测绘学报, 2021, 50(2): 235-247.DOI:10.11947/j.AGCS.2021.20200097. WANG Chang, ZHANG Yongsheng, JI Song, et al. Multi-feature fusion and random multi-graph synthetic building change method[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 235-247. DOI:10.11947/j.AGCS.2021.20200097. [8] CAO Shisong, DU Mingyi, ZHAO Wenji, et al. Multi-level monitoring of three-dimensional building changes for megacities: trajectory, morphology, and landscape[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 54-70. [9] DAI Yuchao, ZHANG Jing, HE Mingyi, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 101-110. [10] SUN Long, WU Tao, SUN Guangcai, et al. Object detection research of SAR image using improved faster region based convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 18-28. [11] FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 90-100. [12] JIANG Huiwei, HU Xiangyun, LI Kun, et al. PGA-SiamNet: pyramid feature-based attention-guided Siamese network for remote sensing orthoimagery building change detection[J]. Remote Sensing, 2020, 12(3): 484. [13] WANG Kexian, ZHENG Shunyi, LI Rui, et al. A deep double-channel dense network for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. [14] SAHA S, BOVOLO F, BRUZZONE L. Building change detection in VHR SAR images via unsupervised deep transcoding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 1917-1929. [15] LI Lu, WANG Chao, ZHANG Hong, et al. Urban building change detection in SAR images using combined differential image and residual U-net network[J]. Remote Sensing, 2019, 11(9): 1091. [16] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [17] LIU Wei, XU Jiawei, GUO Zihui, et al. Building footprint extraction from unmanned aerial vehicle images via PRU-net: application to change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 2236-2248. [18] 顾炼, 许诗起, 竺乐庆. 基于FlowS-Unet的遥感图像建筑物变化检测[J]. 自动化学报, 2020, 46(6): 1291-1300. GU Lian, XU Shiqi, ZHU Yueqing. Building change detection in remote sensing images based on FlowS-unet[J]. Acta Automatica Sinica, 2020, 46(6): 1291-1300. [19] CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662. [20] CHEN Jie, YUAN Ziyang, PENG Jian, et al. DASNet: dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1194-1206. [21] LIU Yi, PANG Chao, ZHAN Zongqian, et al. Building change detection for remote sensing images using a dual-task constrained deep Siamese convolutional network model[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5): 811-815. [22] LI Xiangtai, LI Xia, ZHANG Li, et al. Improving semantic segmentation via decoupled body and edge supervision[M]. Cham: Springer International Publishing, 2020: 435-452. [23] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, U.S.: IEEE, 2016:770-778. [24] LI Kaiyu, LI Zhe, FANG Sheng. Siamese NestedUNet networks for change detection of high resolution satellite image[C]//Proceedings of the 1st International Conference on Control, Robotics and Intelligent System. Xiamen, China: ACM Press, 2020: 42-48. [25] DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: learning optical flow with convolutional networks[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 2758-2766. [26] YE Yuanxin, SHEN Li, HAO Ming, et al. Robust optical-to-SAR image matching based on shape properties[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(4): 564-568. [27] HAO Siyuan, WANG Wei, YE Yuanxin, et al. Two-stream deep architecture for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(4): 2349-2361. |