测绘学报 ›› 2023, Vol. 52 ›› Issue (10): 1714-1723.doi: 10.11947/j.AGCS.2023.20220519

• 摄影测量学与遥感 • 上一篇    下一篇

面向非均质区域的空间增强型时空融合模型研究

皮新宇, 曾永年, 王盼成   

  1. 中南大学空间信息技术与可持续发展研究中心, 湖南 长沙 410083
  • 收稿日期:2022-08-31 修回日期:2023-04-05 发布日期:2023-10-31
  • 通讯作者: 曾永年 E-mail:ynzeng@mail.csu.edu.cn
  • 作者简介:皮新宇(1996-),男,硕士,研究方向为环境遥感与应用。E-mail:841523518@qq.com

Spatially enhanced spatio-temporal fusion model for heterogeneity regions

PI Xinyu, ZENG Yongnian, WANG Pancheng   

  1. Center for Geomatics and Regional Sustainable Development Research, Central South University, Changsha 410083, China
  • Received:2022-08-31 Revised:2023-04-05 Published:2023-10-31

摘要: 随着遥感技术的发展,遥感数据日益增加。然而,受传感器限制及云雨天气影响,单一传感器难以获取高时空分辨率的遥感影像,从而在一定程度上影响全球及区域环境变化研究。遥感影像时空融合理论与技术的发展为解决这一问题提供了有效途径。近年来,国内外学者提出了大量的时空融合算法,但对于复杂地表景观区域空间细节的融合仍存在挑战,地表非均质区域时空融合的精度有待提高。为此,本文提出了一种面向非均质区域的空间增强型时空融合模型。首先,基于混合像元分解原理与遥感数据空间特征尺度不变性假设,将低分辨率光谱变化降尺度为高分辨率光谱变化值;然后,基于不同分辨率遥感数据光谱关系的时间不变性假设,获得最终融合影像。试验结果表明,相对于常用融合模型STARFM、FSDAF,本文模型既能有效反映不同地物物候变化信息,同时能更好地保留地表的空间细节,增强了非均质地表覆盖区域融合影像的空间特征与效果;本文模型的均方根误差RMSE、相关系数r及结构相似性指标SSIM平均值分别达到0.024、0.898、0.897,相对于常用融合模型STARFM、FSDAF,RMSE平均值分别降低了6.71%和4.33%,r平均值分别提高了1.95%和1.74%,SSIM平均值分别提高了2.33%和2.08%。本文模型精度高,模型简单、易于操作,尤其在非均质地表覆盖区域能够取得良好的融合精度与效果,具有良好的应用前景。

关键词: 时空融合, 多源遥感, 空间增强, 子像元, 空间异质性

Abstract: With the development of remote sensing technology, remote sensing data has been increased rapidly. However, due to the limitation of sensors and the influence of cloud and rain weather, it is difficult for a single sensor to obtain remote sensing images with high spatial-temporal resolution, which affects the study of global and regional environmental change to a certain extent. The development of spatio-temporal fusion theory and technology of remote sensing image provides an effective way to solve this problem. In recent years, a number of spatio-temporal fusion algorithms have been proposed. However, there are still challenges to spatio-temporal fusion for accuracy and spatial detail of heterogeneity areas. Therefore, this paper proposes a spatially enhanced spatio-temporal fusion model for heterogeneity regions. Firstly, based on the principle of spectral mixing analysis and the assumption of spatial characteristics invariance of remote sensing data, the low-resolution spectral changes are downscaled to high-resolution. Secondly, based on the assumption of spectral invariance relationship of remote sensing data with different resolutions, the final fusion image is obtained. The experimental results show that compared with the commonly used STARFM and FSDAF models, the spatially enhanced spatio-temporal fusion model for heterogeneity regions can not only predict the phenological change information of different ground features effectively, but also preserves the spatial details of the ground surface and enhances the spatial characteristics and fusion effect in heterogeneous surface area; The mean values of root mean square error (RMSE), correlation coefficient (r) and structural similarity index (SSIM) of the spatially enhanced spatio-temporal fusion model reached 0.024, 0.898 and 0.897, respectively. Compared with the commonly used STARF and FSDAF models, the mean value of RMSE decreased by 6.71% and 4.33%, respectively; the average value of r increased by 1.95% and 1.74%, respectively; the average value of SSIM increased by 2.33% and 2.08%, respectively. The proposed spatially enhanced spatio-temporal fusion model for heterogeneity regions has the advantages of high fusion accuracy, simple and easy operation, especially in the heterogeneous surface coverage area. Therefore, the spatially enhanced spatio-temporal fusion model for heterogeneity regions has good prospects in remote sensing applications.

Key words: spatio-temporal fusion, multi-source remote sensing, spatial enhancement, sub-pixel, spatial heterogeneity

中图分类号: