[1] 张广运,张荣庭,戴琼海,等.测绘地理信息与人工智能2. 0融合发展的方向[J].测绘学报, 2021, 50(8):1096-1108. DOI:10.11947/j.AGCS.2021. 20210200. ZHANG Guangyun, ZHANG Rongting, DAI Qionghai, et al. The direction of integration surveying and mapping geographic information and artificial intelligence 2. 0[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1096-1108. DOI:10.11947/j.AGCS.2021. 20210200. [2] 张永军,万一,史文中,等.多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J].测绘学报, 2021, 50(8):1068-1083. DOI:10.11947/j.AGCS.2021. 20210079. ZHANG Yongjun, WAN Yi, SHI Wenzhong, et al. Technical framework and preliminary practices of photogrammetric remote sensing intelligent processing of multi-source satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1068-1083. DOI:10.11947/j.AGCS.2021. 20210079. [3] 蒋腾平,王永君,张林淇,等.融合CNN和MRF的激光点云层次化语义分割方法[J].测绘学报, 2021, 50(2):215-225. DOI:10.11947/j.AGCS.2021. 20200095. JIANG Tengping, WANG Yongjun, ZHANG Linqi, et al. A LiDAR point cloud hierarchical semantic segmentation method combining CNN and MRF[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2):215-225. DOI:10.11947/j.AGCS.2021. 20200095. [4] 黄刚.基于深度学习的移动激光点云数据自动分类方法研究[J].测绘学报, 2022, 51(5):786. DOI:10.11947/j.AGCS.2022. 20200599. HUANG Gang. Research on automatic classification method of mobile laser point cloud data based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5):786. DOI:10.11947/j.AGCS.2022. 20200599. [5] 赵传,郭海涛,卢俊,等.结合区域增长与RANSAC的机载LiDAR点云屋顶面分割[J].测绘学报, 2021, 50(5):621-633. DOI:10.11947/j.AGCS.2021. 20200270. ZHAO Chuan, GUO Haitao, LU Jun, et al. Roof segmentation from airborne LiDAR by combining region growing with random sample consensus[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5):621-633. DOI:10.11947/j.AGCS.2021. 20200270. [6] HU Xiangyun, YUAN Yi. Deep-learning-based classification for DTM extraction from ALS point cloud[J]. Remote Sensing, 2016, 8(9):730. [7] RIZALDY A, PERSELLO C, GEVAERT C, et al. Ground and multi-class classification of airborne laser scanner point clouds using fully convolutional networks[J]. Remote Sensing, 2018, 10(11):1723. [8] CHARLES R Q, HAO Su, MO Kaichun, et al. PointNet:deep learning on point sets for 3 D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:77-85. [9] QI C R, YI Li, SU Hao, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31 st International Conference on Neural Information Processing Systems. Long Beach:ACM Press, 2017:5105-5114. [10] WANG Yue, SUN Yongbin, LIU Ziwei, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 38(5):146,. [11] GUPTA A, BYRNE J, MOLONEY D, et al. Tree annotations in LiDAR data using point densities and convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2):971-981. [12] YE Maosheng, XU Shuangjie, CAO Tongyi. HVNet:hybrid voxel network for LiDAR based 3 D object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE, 2020:1628-1637. [13] GUO Menghao, CAI Junxiong, LIU Zhengning, et al. PCT:point cloud transformer[J]. Computational Visual Media, 2021, 7(2):187-199. [14] 吴军,崔玥,赵雪梅,等. SSA-PointNet++:空间自注意力机制下的3 D点云语义分割网络[J].计算机辅助设计与图形学学报, 2022, 34(3):437-448. WU Jun, CUI Yue, ZHAO Xuemei, et al. SSA-PointNet++:a space self-attention CNN for the semantic segmentation of 3 D point cloud[J]. Journal of Computer-Aided Design&Computer Graphics, 2022, 34(3):437-448. [15] ZHU Jianfeng, SUI Lichun, ZANG Yufu, et al. Classification of airborne laser scanning point cloud using point-based convolutional neural network[J]. ISPRS International Journal of Geo-Information, 2021, 10(7):444. [16] WANG Y, LI S, WANG M, et al. A simple deep learning network for classification of 3 D mobile LiDAR point cloud[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3):49-59. [17] ZUO Renxiang, ZHANG Guangyun, ZHANG Rongting, et al. A deformable attention network for high-resolution remote sensing images semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-14. [18] SAHA S, MOU Lichao, QIU Chunping, et al. Unsupervised deep joint segmentation of multitemporal high-resolution images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12):8780-8792. [19] KOTARIDIS I, LAZARIDOU M. Remote sensing image segmentation advances:a metaanalysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173:309-322. [20] HE Yunqian, XIA Guihua, LUO Yongkang, et al. DVFENet:dual-branch voxel feature extraction network for 3 D object detection[J]. Neurocomputing, 2021, 459:201-211. [21] KÖLLE M, LAUPHEIMER D, SCHMOHL S, et al. The hessigheim 3 D (H3 D) benchmark on semantic segmentation of high-resolution 3 D point clouds and textured meshes from UAV LiDAR and multi-view-stereo[EB/OL].[2022-07-21]. https://arxiv.org/abs/2102.05346. [22] SHILANE P, MIN P, KAZHDAN M, et al. The princeton shape benchmark[C]//Proceedings of 2004 Shape Modeling Applications. Genova:IEEE, 2004:167-178. [23] WANG Yunhai, ASAFI S, VAN KAICK O, et al. Active co-analysis of a set of shapes[J]. ACM Transactions on Graphics, 2012, 31(6):1-10. [24] BOGO F, ROMERO J, LOPER M, et al. FAUST:dataset and evaluation for 3 D mesh registration[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE, 2014:3794-3801. [25] BRONSTEIN A M, BRONSTEIN M M, CASTELLANI U, et al. SHREC 2010:robust largescale shape retrieval benchmark[J]. Processing 3 DOR, 2010, 5(4):1-8. [26] MASCI J, BOSCAINI D, BRONSTEIN M M, et al. Geodesic convolutional neural networks on Riemannian manifolds[C]//Proceedings of 2015 IEEE International Conference on Computer Vision Workshop. Santiago:IEEE, 2016:832-840. [27] BOSCAINI D, MASCI J, RODOIÀ E, et al. Learning shape correspondence with anisotropic convolutional neural networks[C]//Proceedings of the 30 th International Conference on Neural Information Processing Systems. Barcelona:ACM Press, 2016:3197-3205. [28] MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:5425-5434. [29] HANOCKA R, HERTZ A, FISH N, et al. MeshCNN:a network with an edge[J]. ACM Transactions on Graphics, 38(4):90. [30] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327. [31] LAUPHEIMER D, SHAMSEDDIN M H, HAALA N. The importance of radiometric feature quality for semantic mesh segmentation[C]//Proceedings of 2020 Computer Science, Environmental Science. Stuttgart:DGPF, 2020. [32] TUTZAUER P, LAUPHEIMER D, HAALA N. Semantic urban mesh enhancement utilizing a hybrid model[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, 4:175-182 |