[1] 丁仲礼.中国碳中和框架路线图研究[R]. 北京: 中科院学部第七届学术年会, 2021. DING Zhongli. Research on China's carbon neutralization framework roadmap[R]. Beijing: The 7th Annual Academic Conference of the Academic Department of the Chinese Academy of Sciences, 2021. [2] 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学: 地球科学, 2007, 37(6): 804-812. FANG Jingyun, GUO Zhaodi, PIAO Shilong, et al. Estimation of carbon sinks of terrestrial vegetation in China from 1981 to 2000[J]. Chinese Science: Earth Science, 2007, 37(6): 804-812. [3] 联合国粮农组织. 全球森林资源评估[R]. 罗马:联合国粮农组织, 2021. Food and Agriculture Organization of the United Nations. Global forest resources assessment[R]. Rome: FAO, 2021. [4] JIANG Fei, CHEN J M, ZHOU Lingxi, et al. A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches[J]. Scientific Reports, 2016, 6: 22130. [5] FANG Jingyun, YU Guirui, LIU Lingli, et al. Climate change, human impacts, and carbon sequestration in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4015-4020. [6] PIAO Shilong, FANG Jingyun, CIAIS P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458: 1009-1013. [7] HE Honglin, WANG Shaoqiang, ZHANG Li, et al. Altered trends in carbon uptake in China's terrestrial ecosystems under the enhanced summer monsoon and warming hiatus[J]. National Science Review, 2019, 6(3): 505-514. [8] TIAN Hanqin, MELILLO J, LU Chaoqun, et al. China's terrestrial carbon balance: contributions from multiple global change factors[J]. Global Biogeochemical Cycles, 2011, 25(1): GB1007. [9] FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W, et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4): 3269-3340. [10] CHEN Baozhang, ZHANG Huifang, WANG Tao, et al. An atmospheric perspective on the carbon budgets of terrestrial ecosystems in China: progress and challenges[J]. Science Bulletin, 2021, 66(17): 1713-1718. [11] ZHANG H F, CHEN B Z, VAN DER LAAN-LUIJKX I T, et al. Net terrestrial CO2 exchange over China during 2001—2010 estimated with an ensemble data assimilation system for atmospheric CO2[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(6): 3500-3515. [12] WANG Jing, FENG Liang, PALMER P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586: 720-723. [13] SCHUH A E, BYRNE B, JACOBSON A R, et al. On the role of atmospheric model transport uncertainty in estimating the Chinese land carbon sink[J]. Nature, 2022, 603: E13-E14. [14] 朴世龙, 何悦, 王旭辉, 等. 中国陆地生态系统碳汇估算: 方法、进展、展望[J]. 中国科学: 地球科学, 2022, 52(6): 1010-1020. PIAO Shilong, HE Yue, WANG Xuhui, et al. Carbon sequestration estimation of terrestrial ecosystem in China: method, progress and prospect[J]. Chinese Science: Earth Science (Terrae), 2022, 52(6): 1010-1020. [15] 朴世龙, 岳超, 丁金枝, 等. 试论陆地生态系统碳汇在“碳中和” 目标中的作用[J]. 中国科学: 地球科学, 2022, 52(7): 1419-1426. PIAO Shilong, YUE Chao, DING Jinzhi, et al. On the role of carbon sink in terrestrial ecosystem in the goal of “carbon neutrality” [J]. Chinese Science: Earth Science, 2022, 52(7): 1419-1426. [16] 方精云. 碳中和的生态学透视[J]. 植物生态学报, 2021, 45(11): 1173-1176. FANG Jingyun. Ecological perspectives of carbon neutrality[J]. Chinese Journal of Plant Ecology, 2021, 45(11): 1173-1176. [17] FRANTZ D, SCHUG F, OKUJENI A, et al. National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series[J]. Remote Sensing of Environment, 2021, 252: 112128. [18] LI Wang, NIU Zheng, SHANG Rong, et al. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92: 102163. [19] POTAPOV P, LI Xinyuan, HERNANDEZ-SERNA A, et al. Mapping global forest canopy height through integration of GEDI and Landsat data[J]. Remote Sensing of Environment, 2021, 253: 112165. [20] BAUER L, KNAPP N, FISCHER R. Mapping Amazon forest productivity by fusing GEDI LiDAR waveforms with an individual-based forest model[J]. Remote Sensing, 2021, 13(22): 4540. [21] MAGRUDER L, NEUENSCHWANDER A, KLOTZ B. Digital terrain model elevation corrections using space-based imagery and ICESat-2 laser altimetry[J]. Remote Sensing of Environment, 2021, 264: 112621. [22] NARINE L L, POPESCU S, NEUENSCHWANDER A, et al. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data[J]. Remote Sensing of Environment, 2019, 224: 1-11. [23] NEUENSCHWANDER A, PITTS K. The ATL08 land and vegetation product for the ICESat-2 mission[J]. Remote Sensing of Environment, 2019, 221: 247-259. [24] LEONARDO E M C, WATT M S, PEARSE G D, et al. Comparison of TanDEM-X InSAR data and high-density ALS for the prediction of forest inventory attributes in plantation forests with steep terrain[J]. Remote Sensing of Environment, 2020, 246: 111833. [25] LU Hongliang, ZHANG Heng, FAN Huaitao, et al. Forest height retrieval using P-band airborne multi-baseline SAR data: a novel phase compensation method[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 99-118. [26] POURSHAMSI M, XIA Junshi, YOKOYA N, et al. Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172: 79-94. [27] TEBALDINI S, YANG X, BAI Y, et al. Progresses on SAR remote sensing of tropical forests: forest biomass retrieval and analysis of changing weather conditions[J].Journal of Geodesy and Geoinformation Science,2021,4(1):88-93. [28] XU Dandan, WANG Haobin, XU Weixin, et al. LiDAR applications to estimate forest biomass at individual tree scale: opportunities, challenges and future perspectives[J]. Forests, 2021, 12(5): 550. [29] BRUGGISSER M, HOLLAUS M, OTEPKA J, et al. Influence of ULS acquisition characteristics on tree stem parameter estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 28-40. [30] FU Xiaoyao, ZHANG Zhengnan, CAO Lin, et al. Assessment of approaches for monitoring forest structure dynamics using bi-temporal digital aerial photogrammetry point clouds[J]. Remote Sensing of Environment, 2021, 255: 112300. [31] LIU Xiaoqiang, SU Yanjun, HU Tianyu, et al. Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data[J]. Remote Sensing of Environment, 2022, 269: 112844. [32] DUNCANSON L, KELLNER J R, ARMSTON J, et al. Aboveground biomass density models for NASA's Global Ecosystem Dynamics investigation (GEDI) LiDAR mission[J]. Remote Sensing of Environment, 2022, 270: 112845. [33] GUERRA-HERNDEZ J, PASCUAL A. Using GEDI LiDAR data and airborne laser scanning to assess height growth dynamics in fast-growing species: a showcase in Spain[J]. Forest Ecosystems, 2021, 8(1): 14. [34] HUANG Chengquan, GONG Weishu, PANG Yong. Remote sensing and forest carbon monitoring—a review of recent pro-gress, challenges and opportunities[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 124-147. [35] SILVA C A, DUNCANSON L, HANCOCK S, et al. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping[J]. Remote Sensing of Environment, 2021, 253: 112234. [36] 周国逸, 尹光彩, 唐旭利, 等. 中国森林生态系统碳储量-生物量方程[M]. 北京: 科学出版社, 2018. ZHOU Guoyi, YIN Guangcai, TANG Xuli. Carbon storage-biomass equation of forest ecosystem in China[M]. Beijing: Science Press, 2018. [37] 方精云, 朱剑霄. 中国森林生态系统碳收支研究[M]. 北京: 科学出版社, 2021. FANG Jingyun, ZHU Jianxiao. Carbon budgets of forest ecosystems in China[M]. Beijing: Science Press, 2021. [38] JIANG Xiandie, LI Guiying, LU Dengsheng, et al. Stratification-based forest aboveground biomass estimation in a subtropical region using airborne LiDAR data[J]. Remote Sensing, 2020, 12(7): 1101. [39] KANKARE V, HOLOPAINEN M, VASTARANTA M, et al. Individual tree biomass estimation using terrestrial laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 75: 64-75. [40] KANKARE V, RÄTY M, YU Xiaowei, et al. Single tree biomass modelling using airborne laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85: 66-73. [41] LIU Yanan, GONG Weishu, XING Yanqiu, et al. Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151: 277-289. [42] DAS S, SINGH T.Correlation analysis between biomass and spectral vegetation indices of forest ecosystem[J]. International Journal of Engineering Research and Technology, 2012,1(5), 1-13. [43] YAN Feng, WU Bo, WANG Yanjiao. Estimating aboveground biomass in Mu Us Sandy Land using Landsat spectral derived vegetation indices over the past 30 years[J]. Journal of Arid Land, 2013, 5(4): 521-530. [44] PIAO Shilong, FANG Jingyun, ZHU Biao, et al. Forest biomass carbon stocks in China over the past 2 decades: estimation based on integrated inventory and satellite data[J]. Journal of Geophysical Research (Biogeosciences), 2005, 110(G1): G01006. [45] LU Dengsheng, BATISTELLA M. Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon[J]. Acta Amazonica, 2005, 35(2): 249-257. [46] NASSET E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data[J]. Remote Sensing of Environment, 2002, 80(1): 88-99. [47] ZHAO Kaiguang, SUAREZ J C, GARCIA M, et al. Utility of multitemporal LiDAR for forest and carbon monitoring: tree growth, biomass dynamics, and carbon flux[J]. Remote Sensing of Environment, 2018, 204: 883-897. [48] FU Yuanyuan, HE H S, HAWBAKER T J, et al. Evaluating k-nearest neighbor (kNN) imputation models for species-level aboveground forest biomass mapping in Northeast China[J]. Remote Sensing, 2019, 11(17): 2005. [49] PUROHIT S, AGGARWAL S P, PATEL N R. Estimation of forest aboveground biomass using combination of Landsat 8 and Sentinel-1A data with random forest regression algorithm in Himalayan Foothills[J]. Tropical Ecology, 2021, 62(2): 288-300. [50] STÜMER W, KENTER B, KÖHL M. Spatial interpolation of in situ data by self-organizing map algorithms (neural networks) for the assessment of carbon stocks in European forests[J]. Forest Ecology and Management, 2010, 260(3): 287-293. [51] SAFARI A, SOHRABI H, POWELL S, et al. A comparative assessment of multi-temporal Landsat 8 and machine learning algorithms for estimating aboveground carbon stock in coppice oak forests[J]. International Journal of Remote Sensing, 2017, 38(22): 6407-6432. [52] TIMOTHY D, ONISIMO M, CLETAH S, et al. Remote sensing of aboveground forest biomass: a review[J]. Tropical Ecology, 2016, 57(2): 125-132. [53] 王襄平, 赵霞. 陆地生态系统碳储量调查和碳源汇数据收集规范[M]. 北京: 科学出版社, 2022. WANG Xiangping, ZHAO Xia. Specification for carbon storage investigation and data collection of carbon sources and sinks in terrestrial ecosystems[M]. Beijing: Science Press, 2022. [54] 李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010. LI Haikui, LEI Yuancai. Estimation and evaluation of forest biomass carbon storage in China[M]. Beijing: China Forestry Publishing House, 2010. [55] DONEV P, WANG H, QIN S, et al. Estimating the forest above-ground biomass based on extracted LiDAR metrics and predicted diameter at breast height[J].Journal of Geodesy and Geoinformation Science,2021,4(3):13-24. |