测绘学报 ›› 2024, Vol. 53 ›› Issue (7): 1308-1320.doi: 10.11947/j.AGCS.2024.20230017
祝传广1(), 张继贤2,3(), 龙四春1, 杨容华1, 吴文豪1, 张立亚1
收稿日期:
2023-01-16
发布日期:
2024-08-12
通讯作者:
张继贤
E-mail:zhucg@hnust.edu.cn;zhangjx@casm.ac.cn
作者简介:
祝传广(1984—),男,博士,副教授,研究方向为InSAR理论与应用。E-mail:zhucg@hnust.edu.cn
基金资助:
Chuanguang ZHU1(), Jixian ZHANG2,3(), Sichun LONG1, Ronghua YANG1, Wenhao WU1, Liya ZHANG1
Received:
2023-01-16
Published:
2024-08-12
Contact:
Jixian ZHANG
E-mail:zhucg@hnust.edu.cn;zhangjx@casm.ac.cn
About author:
ZHU Chuanguang (1984—), male, PhD, associate professor, majors in theories and application of InSAR. E-mail: zhucg@hnust.edu.cn
Supported by:
摘要:
常规的分布式散射体(DS)相位估计方法需要生成全组合干涉对以构建样本协方差矩阵(SCM),然后根据SCM的统计特性估计DS相位,这一过程不但计算耗时,而且占据大量存储空间。本文提出了一种基于奇异值分解技术的DS相位快速估计方法(SVDI)。该方法分析的对象是单主影像干涉对组成的干涉相位矩阵而非全组合干涉对组成的SCM,因而可以有效提高计算效率、节省存储空间。并且,理论上证明了在一定条件下SVDI的结果与常规的特征值分解方法(EVD)是一致的。模拟数据和真实SAR数据的结果表明,SVDI算法有更高的计算效率,并且其相位估计精度以及形变解算精度与常规算法是一致的。
中图分类号:
祝传广, 张继贤, 龙四春, 杨容华, 吴文豪, 张立亚. 分布式散射体相位估计奇异值分解法[J]. 测绘学报, 2024, 53(7): 1308-1320.
Chuanguang ZHU, Jixian ZHANG, Sichun LONG, Ronghua YANG, Wenhao WU, Liya ZHANG. Phase estimation of distributed scatterer based on singular value decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1308-1320.
[1] | BAMLER R, HARTL P. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998, 14(4):R1-R54. |
[2] | FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. |
[3] | SAMIEI-ESFAHANY S, MARTINS J E, VAN LEIJEN F, et al. Phase estimation for distributed scatterers in InSAR stacks using integer least squares estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):5671-5687. |
[4] | 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. |
ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. | |
[5] | 李振洪, 朱武, 余琛, 等. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报, 2022, 51(7):1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. |
LI Zhenhong, ZHU Wu, YU Chen, et al. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. | |
[6] | FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanents catterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. |
[7] | HOOPER A, SEGALL P, ZEBKER, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos[J]. Jorunal of Geophysical Research (Solid Earth), 2007, 112(B7):B07407. |
[8] | HOOPER A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16):L16302. |
[9] | BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. |
[10] | GUARNIERI A M, TEBALDINI S. On the exploitation of target statistics for SAR interferometry applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11):3436-3443. |
[11] | ANSARI H, DE ZAN F, BAMLER R. Sequential estimator: toward efficient InSAR time series analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5637-5652. |
[12] | EVEN M, SCHULZ K. InSAR deformation analysis with distributed scatterers: a review complemented by new advances[J]. Remote Sensing, 2018, 10(5):744. |
[13] | CAO Ning, LEE H, JUNG H C. Mathematical framework for phase-triangulation algorithms in distributed-scatterer interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1838-1842. |
[14] | FORNARO G, VERDE S, REALE D, et al. CAESAR: an approach based on covariance matrix decomposition to improve multibaseline-multitemporal interferometric SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):2050-2065. |
[15] | TEBALDINI S, MONTI A. Methods and performances for multi-pass SAR interferometry[M]//Geoscience and Remote Sensing New Achievements. Slavka: InTech, 2010: 329-356. |
[16] | ZEBKER H A, CHEN K. Accurate estimation of correlation in InSAR observations[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2):124-127. |
[17] | FERRETTI A, FUMAGALLI A, NOVALI F, et al. Process for filtering interferograms obtained from SAR images acquired on the same area: US8711029[P/OL]. [2023-01-16].http://www.freepatentsonline.com/8711029.html. |
[18] | ZHAO Changjun, LI Zhen, TIAN Bangsen, et al. A ground surface deformation monitoring InSAR method using improved distributed scatterers phase estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11):4543-4553. |
[19] | ROCCA F, RUCCI A, FERRETTI A, et al. Advanced InSAR interferometry for reservoir monitoring[J]. First Break, 2013, 31:77-85. |
[20] | ANSARI H, DE ZAN F, BAMLER R. Efficient phase estimation for interferogram stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7):4109-4125. |
[21] | CAO Ning, LEE H, JUNG H C. A phase-decomposition-based PSInSAR processing method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):1074-1090. |
[22] | 祝传广, 张继贤, 邓喀中, 等. 基于改进MT-InSAR的日兰高铁巨野煤田段沉降监测[J]. 煤炭学报, 2022, 47(3):1031-1042. |
ZHU Chuanguang, ZHANG Jixian, DENG Kazhong, et al. Monitoring and analysis of subsidence along Ri-Lan high-speed railway at Juye coalfield based on the improved MT-InSAR[J]. Journal of China Coal Society, 2022, 47(3):1031-1042. | |
[23] | LI Shijin, ZHANG Shubi, LI Tao, et al. An adaptive phase optimization algorithm for distributed scatterer phase history retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:3914-3926. |
[24] | WANG Yunqi, ZHANG Kui, GONG Faming, et al. Interferometric phase reconstruction based on probability generative model: toward efficient analysis of high-dimensional SAR stacks[J]. Remote Sensing, 2021, 13(12):2369. |
[25] | 赵超英, 王宝行. SAR干涉图降噪的稳健协方差矩阵分解法[J]. 测绘学报, 2019, 48(1):24-33. DOI: 10.11947/j.AGCS.2019.20170394. |
ZHAO Chaoying, WANG Baohang. SAR interferogram denoising based on robust covariance matrix decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):24-33. DOI: 10.11947/j.AGCS.2019.20170394. | |
[26] | SONG Huina, ZHANG Bowen, WANG Mengyuan, et al. A fast phase optimization approach of distributed scatterer for multitemporal SAR data based on Gauss-seidel method[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:4013505. |
[27] | XIAO Ruya, HE Xiufeng, GAO Zhuang, et al. Phase estimation for distributed scatterers by alternating projection[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2022, 3(4):204-210. |
[28] | ZHANG Kui, SONG Ruiqing, WANG Hui, et al. Interferometric phase reconstruction using simplified coherence network[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:1-9. |
[29] | CASU F, ELEFANTE S, IMPERATORE P, et al. SBAS-DInSAR parallel processing for deformation time-series computation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8):3285-3296. |
[30] | WANG Shunyao, ZHANG Guo, CHEN Zhenwei, et al. A refined parallel stacking InSAR workflow for large-scale deformation fast extraction—a case study of Tibet[J]. Geocarto International, 2022, 37(27):16074-16085. |
[31] | MORISHITA Y, LAZECKY M, WRIGHT T J, et al. LiCSBAS: an open-source InSAR time series analysis package integrated with the LiCSAR automated sentinel-1 InSAR processor[J]. Remote Sensing, 2020, 12(3):424. |
[32] | LAZECKÝ M, SPAANS K, GONZÁLEZ P J, et al. LiCSAR: an automatic InSAR tool for measuring and monitoring tectonic and volcanic activity[J]. Remote Sensing, 2020, 12(15):2430. |
[33] | ZINNO I, BONANO M, BUONANNO S, et al. National scale surface deformation time series generation through advanced DInSAR processing of Sentinel-1 data within a cloud computing environment[J]. IEEE Transactions on Big Data, 2020, 6(3):558-571. |
[34] | MA Zhangfeng, LIU Jihong, AOKI Y, et al. Towards big SAR data era: an efficient Sentinel-1 near-real-time InSAR processing workflow with an emphasis on co-registration and phase unwrapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188:286-300. |
[35] | 张贤达. 矩阵分析与应用[M]. 2版. 北京: 清华大学出版社, 2013: 288-295. |
ZHANG Xianda. Matrix analysis and applications[M]. 2nd ed. Beijing: Tsinghua University Press, 2013: 288-295. | |
[36] | GOODMAN J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66:1145-1150. |
[37] | MADSEN S N. Speckle theory: modelling, analysis, and applications related to synthetic aperture radar data[D]. Lyngby: Technical University of Denmark, 1986. |
[38] | MACEDO H D. Gaussian elimination is not optimal, revisited[J]. Journal of Logical and Algebraic Methods in Programming, 2016, 85:999-1010. |
[39] | GOLUB G H, VAN LOAN C F. Matrix computations[M]. 4th ed. Baltimore: Johns Hopkins University Press, 2013. |
[40] | ROKHLIN V, SZLAM A, TYGERT M. A randomized algorithm for principal component analysis[J]. SIAM Journal on Matrix Analysis and Applications, 2009, 31(3):1100-1124. |
[41] | OKŠA G, VAJTERŠIC M. Efficient pre-processing in the parallel block-Jacobi SVD algorithm[J]. Parallel Computing, 2006, 32(2):166-176. |
[42] | ZEBKER H A, VILLASENOR J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):950-959. |
[43] | MORISHITA Y, HANSSEN R F. Temporal decorrelation in L-, C-, and X-band satellite radar interferometry for pasture on drained peat soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):1096-1104. |
[44] | ROCCA F. Modeling interferogram stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10):3289-3299. |
[45] | EVEN M. A study on algorithms and parameter settings for DS preprocessing[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 3975-3978. |
[46] | PARIZZI A, CONG X, EINEDER M. First results from multifrequency interferometry. A comparison of different decorrelation time constants at L, C, and X Band[C]//Proceedings of 2009 ESA Fringe Workshop. [S.l.]: DLR, 2009. |
[47] | GUARNIERI A M, TEBALDINI S. Hybrid Cramér-Rao bounds for crustal displacement field estimators in SAR interferometry[J]. IEEE Signal Processing Letters, 2007, 14(12):1012-1015. |
[48] | YAGÜE-MARTÍNEZ N, PRATS-IRAOLA P, RODRÍGUEZ GONZÁLEZ F, et al. Interferometric processing of Sentinel-1 TOPS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4):2220-2234. |
[49] | HAMPEL F R. The influence curve and its role in robust estimation[J]. Journal of the American Statistical Association, 1974, 69(346):383-393. |
[50] | ROUSSEEUW P J, CROUX C. Alternatives to the median absolute deviation[J]. Journal of the American Statistical Association, 1993, 88(424):1273-1283. |
[1] | 董杨, 范大昭, 纪松, 雷蓉. 主成分分析的匹配点对提纯方法[J]. 测绘学报, 2017, 46(2): 228-236. |
[2] | 姚宜斌, 熊朝晖, 张豹, 张良, 孔建. 顾及设计矩阵误差的AR模型新解法[J]. 测绘学报, 2017, 46(11): 1795-1801. |
[3] | 谢东海, 钟若飞, 吴俣, 符晗, 黄小川, 孙振兴. 球面全景影像相对定向与精度验证[J]. 测绘学报, 2017, 46(11): 1822-1829. |
[4] | 郭贤 黄昕 张乐飞 张良培. 采用张量子空间的高光谱影像多维滤波算法[J]. 测绘学报, 2013, 42(2): 253-267. |
[5] | 王乐洋,许才军,汪建军. 附有病态约束矩阵的等式约束反演问题研究[J]. 测绘学报, 2009, 38(5): 0-414. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||