测绘学报 ›› 2017, Vol. 46 ›› Issue (11): 1822-1829.doi: 10.11947/j.AGCS.2017.20160645

• 摄影测量学与遥感 • 上一篇    下一篇

球面全景影像相对定向与精度验证

谢东海1,2, 钟若飞1,2, 吴俣3, 符晗1,2, 黄小川1,2, 孙振兴1,2   

  1. 1. 首都师范大学地球空间信息科学与技术国际化示范学院, 北京 100048;
    2. 北京成像技术高精尖创新中心, 北京 100048;
    3. 中国科学院遥感与数字地球研究所, 北京 100094
  • 收稿日期:2016-12-22 修回日期:2017-08-14 出版日期:2017-11-20 发布日期:2017-12-05
  • 通讯作者: 钟若飞 E-mail:zrfsss@163.com
  • 作者简介:谢东海(1978-),男,博士,讲师,研究方向为摄影测量与遥感。E-mail:xdhbj@126.com
  • 基金资助:

    国家自然科学基金(41371434)

Relative Pose Estimation and Accuracy Verification of Spherical Panoramic Image

XIE Donghai1,2, ZHONG Ruofei1,2, WU Yu3, FU Han1,2, HUANG Xiaochuan1,2, SUN Zhenxing1,2   

  1. 1. College of Geospatial Information Science and Technology, Capital Normal University, Beijing 100048, China;
    2. Beijing Advanced Innovation Center for Imaging Technology, Beijing 100048, China;
    3. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
  • Received:2016-12-22 Revised:2017-08-14 Online:2017-11-20 Published:2017-12-05
  • Supported by:

    The National Natural Science Foundation of China (No. 41371434)

摘要:

对传统的5点法相对定向算法的共面误差计算方法进行改进,提出了一种适合球面全景成像特点的相对定向计算流程。与传统方法相同,该算法首先计算本质矩阵,然后对本质矩阵进行奇异值分解得到旋转矩阵和平移矢量的候选解,最后利用重建的物方三维点坐标排除错误解。本文的贡献在于推导了球面全景共面条件公式,并使用点到核线平面的球面距离作为球面全景共面条件的误差项。模拟数据试验显示:当图像特征点的随机噪声在像素范围内时,3个姿态角的中误差约为0.1°,由相对定向恢复的相对平移量与模拟值的夹角中误差约为1.5°。使用车载全景相机配合POS获取的数据进行试验的结果显示:横滚角和俯仰角的中误差可以达到0.2°以内,航向角的中误差可以达到0.4°以内,由相对定向恢复的相对平移量与POS平移量的夹角中误差可以达到2°以内。采用本文相对定向算法的结果生成球面全景核线影像,提取影像之间同名点坐标并计算其列方向误差,结果显示核线影像同名点列坐标差的中误差在1个像素以内。

关键词: 球面全景影像, 相对定向, 核线, 本质矩阵, 奇异值分解

Abstract:

This paper improves the method of the traditional 5-point relative pose estimation algorithm, and proposes a relative pose estimation algorithm which is suitable for spherical panoramic images. The algorithm firstly computes the essential matrix, then decomposes the essential matrix to obtain the rotation matrix and the translation vector using SVD, and finally the reconstructed three-dimensional points are used to eliminate the error solution. The innovation of the algorithm lies the derivation of panorama epipolar formula and the use of the spherical distance from the point to the epipolar plane as the error term for the spherical panorama co-planarity function. The simulation experiment shows that when the random noise of the image feature points is within the range of pixel, the error of the three Euler angles is about 0.1°, and the error between the relative translational displacement and the simulated value is about 1.5°. The result of the experiment using the data obtained by the vehicle panorama camera and the POS shows that:the error of the roll angle and pitch angle can be within 0.2°, the error of the heading angle can be within 0.4°, and the error between the relative translational displacement and the POS can be within 2°. The result of our relative pose estimation algorithm is used to generate the spherical panoramic epipolar images, then we extract the key points between the spherical panoramic images and calculate the errors in the column direction. The result shows that the errors is less than 1 pixel.

Key words: spherical panoramic images, relative pose estimation, epipolar line, essential matrix, SVD

中图分类号: