测绘学报 ›› 2024, Vol. 53 ›› Issue (7): 1336-1344.doi: 10.11947/j.AGCS.2024.20230046
李保金1(), 薛树强1,2(), 孙文舟2, 李景森1, 曾安敏2, 卞加超1
收稿日期:
2023-02-21
发布日期:
2024-08-12
通讯作者:
薛树强
E-mail:libaojin1998@163.com;xuesq@casm.ac.cn
作者简介:
李保金(1998—),男,硕士,研究方向为海洋大地测量。E-mail:libaojin1998@163.com
基金资助:
Baojin LI1(), Shuqiang XUE1,2(), Wenzhou SUN2, Jingsen LI1, Anmin ZENG2, Jiachao BIAN1
Received:
2023-02-21
Published:
2024-08-12
Contact:
Shuqiang XUE
E-mail:libaojin1998@163.com;xuesq@casm.ac.cn
About author:
LI Baojin (1998—), male, master, majors in marine geodesy. E-mail: libaojin1998@163.com
Supported by:
摘要:
高精度水下导航定位为提高计算效率通常需要对声速剖面进行适度简化。简化声速剖面一方面涉及复杂组合优化问题,另一方面需要考虑简化导致的声线精度损失。本文构建了简化声速剖面的声线精度损失极小准则,并利用遗传算法求解该极小准则所涉及的组合优化问题。结果表明,相比简化声速剖面的MOV法与面积差法,本文算法可在有效控制声线精度损失的前提下,确定声速剖面简化层数,实现声速剖面简化的全局优化。
中图分类号:
李保金, 薛树强, 孙文舟, 李景森, 曾安敏, 卞加超. 简化声速剖面的声线精度损失极小准则及遗传算法[J]. 测绘学报, 2024, 53(7): 1336-1344.
Baojin LI, Shuqiang XUE, Wenzhou SUN, Jingsen LI, Anmin ZENG, Jiachao BIAN. Acoustic ray error minimization criteria and genetic algorithm for simplifying sound velocity profile[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1336-1344.
表1
不同算法的简化SVP解"
层数 | MOV简化剖面 | 面积差简化剖面 | 遗传算法简化剖面 | |||
---|---|---|---|---|---|---|
深度/m | 声速/(m/s) | 深度/m | 声速/(m/s) | 深度/m | 声速/(m/s) | |
1 | 6.02 | 1 544.52 | 6.02 | 1 544.52 | 6.02 | 1 544.52 |
2 | 39.53 | 1 544.67 | 48 | 1 536.22 | 153.27 | 1 509.13 |
3 | 41.96 | 1 540.63 | 85 | 1 520.24 | 172.17 | 1 507.51 |
4 | 44.72 | 1 539.72 | 159 | 1 508.55 | 281.83 | 1 498.79 |
5 | 54.63 | 1 532.55 | 233 | 1 502.73 | 434.75 | 1 492.65 |
6 | 84.48 | 1 520.44 | 307 | 1 497.89 | 510.84 | 1 490.98 |
7 | 101.54 | 1 516.22 | 456 | 1 492.13 | 537.89 | 1 489.76 |
8 | 166.87 | 1 507.62 | 604 | 1 488.96 | 763.06 | 1 485.94 |
9 | 197.75 | 1 505.38 | 753 | 1 486.14 | 812.98 | 1 485.59 |
10 | 199.24 | 1 506.24 | 901 | 1 484.79 | 897.61 | 1 484.79 |
11 | 200.86 | 1 504.95 | 1049 | 1 484.37 | 1 198.52 | 1 483.90 |
12 | 219.29 | 1 504.37 | 1197 | 1 483.88 | 1 313.97 | 1 484.32 |
13 | 265.59 | 1 499.77 | 1332 | 1 484.38 | 1 449.13 | 1 485.43 |
14 | 434.75 | 1 492.65 | 1466 | 1 485.62 | 1 613.18 | 1 487.21 |
15 | 539.73 | 1 489.67 | 1735 | 1 488.77 | 1 793.56 | 1 489.50 |
16 | 778.13 | 1 485.63 | 2004 | 1 492.47 | 1 989.93 | 1 492.24 |
17 | 1 197.71 | 1 483.88 | 2273 | 1 496.64 | 2 290.49 | 1 496.89 |
18 | 1 608.47 | 1 487.13 | 2632 | 1 502.55 | 2 353.63 | 1 497.91 |
19 | 2 301.04 | 1 497.04 | 2991 | 1 508.63 | 2 444.25 | 1 499.40 |
20 | 3 269.72 | 1 513.35 | 3 269.72 | 1 513.35 | 3 269.72 | 1 513.35 |
[1] | 杨元喜, 任夏, 贾小林, 等. 以北斗系统为核心的国家安全PNT体系发展趋势[J]. 中国科学:地球科学, 2023, 53(5):917-927. |
YANG Yuanxi, REN Xia, JIA Xiaolin, et al. Development trends of the national secure PNT system based on BDS[J]. Science China Earth Sciences, 2023, 53(5):917-927. | |
[2] | 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5):505-510. DOI: 10.11947/j.AGCS.2016.20160127. |
YANG Yuanxi. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):505-510. DOI: 10.11947/j.AGCS.2016.20160127. | |
[3] | YANG Yuanxi, LIU Yanxiong, SUN Dajun, et al. Seafloor geodetic network establishment and key technologies[J]. Science China Earth Sciences, 2020, 63(8):1188-1198. |
[4] | 杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7):893-898. DOI: 10.11947/j.AGCS.2018.20180149. |
YANG Yuanxi. Resilient PNT concept frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7):893-898. DOI: 10.11947/j.AGCS.2018.20180149. | |
[5] | 杨元喜, 杨诚, 任夏. PNT智能服务[J]. 测绘学报, 2021, 50(8):1006-1012. DOI: 10.11947/j.AGCS.2021.20210051. |
YANG Yuanxi, YANG Cheng, REN Xia. PNT intelligent services[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1006-1012. DOI: 10.11947/j.AGCS.2021.20210051. | |
[6] | 肖圳, 薛树强, 韩保民, 等. 参考声速剖面误差对主动式声呐定位影响仿真分析[J]. 地球物理学报, 2023, 66(12):4889-4899. |
XIAO Zhen, XUE Shuqiang, HAN Baomin, et al. Simulation analysis on reference sound velocity profile error influence on active acoustic positioning[J]. Chinese Journal of Geophysics, 2023, 66(12):4889-4899. | |
[7] | 薛树强, 肖圳, 董杰, 等. 海底震后形变多基站联合估计模型[J]. 地球物理学报, 2024, 67(3):1013-1021. |
XUE Shuqiang, XIAO Zhen, DONG Jie, et al. Post-seismic deformation jointly estimated by multi seafloor geodetic stations[J]. Chinese Journal of Geophysics, 2024, 67(3):1013-1021. | |
[8] | YANG Wenlong, XUE Shuqiang, LIU Yixu. P-order secant method for rapidly solving the ray inverse problem of underwater acoustic positioning[J]. Marine Geodesy, 2023, 46(1):3-15. |
[9] | 闫凤池, 王振杰, 赵爽, 等. 顾及双程声径的常梯度声线跟踪水下定位算法[J]. 测绘学报, 2022, 51(1):31-40. DOI: 10.11947/j.AGCS.2022.20210234. |
YAN Fengchi, WANG Zhenjie, ZHAO Shuang, et al. A layered constant gradient acoustic ray tracing underwater positioning algorithm considering round-trip acoustic path[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1):31-40. DOI: 10.11947/j.AGCS.2022.20210234. | |
[10] | XUE Shuqiang, LI Baojin, XIAO Zhen, et al. Centimeter-level-precision seafloor geodetic positioning model with self-structured empirical sound speed profile[J]. Satellite Navigation, 2023, 4(1):30. |
[11] | 赵建虎, 张红梅, 吴猛. 一种基于常梯度模板插值的声线跟踪算法[J]. 武汉大学学报(信息科学版), 2021, 46(1):71-78. |
ZHAO Jianhu, ZHANG Hongmei, WU Meng. A sound ray tracking algorithm based on template-interpolation of constant-gradient sound velocity[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1):71-78. | |
[12] | ZIELINSKI X G A. Precise multibeam acoustic bathymetry[J]. Marine Geodesy, 1999, 22(3):157-167. |
[13] | YANG Fanlin, LI Jiabiao, WU Ziyin, et al. A post-processing method for the removal of refraction artifacts in multibeam bathymetry data[J]. Marine Geodesy, 2007, 30(3):235-247. |
[14] | 张居成, 郑翠娥, 孙大军. 用于声线跟踪定位的自适应分层方法[J]. 哈尔滨工程大学学报, 2013, 34(12):1497-1501. |
ZHANG Jucheng, ZHENG Cuie, SUN Dajun. A self-adapting division method for ray-tracing positioning[J]. Journal of Harbin Engineering University, 2013, 34(12):1497-1501. | |
[15] | 郑根, 张红梅, 冯磊, 等. 基于面积差的声速剖面自适应简化方法[J]. 测绘学报, 2018, 47(10):1415-1423. DOI: 10.11947/j.AGCS.2018.20170232. |
ZHENG Gen, ZHANG Hongmei, FENG Lei, et al. An adaptive simplification method of SVP based on area difference[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10):1415-1423. DOI: 10.11947/j.AGCS.2018.20170232. | |
[16] | ZHENG Gen, ZHAO Jianhu, ZHANG Hongmei. An adaptive SVP simplification based on area difference[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4):53-63. |
[17] | 孙文舟, 朱忆, 曾安敏, 等. 深水目标定位声速剖面自适应分层方法[J/OL]. 武汉大学学报(信息科学版): 1-10.[2023-02-21]. https://doi.org/10.13203/j.whugis20220662. |
SUN Wenzhou, ZHU Yi, ZENG Anmin, et al. A self-adaptive layering method of the sound velocity profile for deep-water object positioning[J/OL]. Geomatics and Information Science of Wuhan University: 1-10.[2023-02-21]. https://doi.org/10.13203/j.whugis20220662. | |
[18] | BEAUDOIN J, FURLONG A,SMYTH S, et al. Streamlining sound speed profile pre-processing: case studies and field trials[C]//Proceedings of 2011 U. S. Hydrographic Conference. Tampa: [s.n.], 2011. |
[19] | 李圣雪, 王振杰, 聂志喜, 等. 一种适用于深海长基线定位的自适应分层声线跟踪法[J]. 海洋通报, 2015, 34(5):491-498. |
LI Shengxue, WANG Zhenjie, NIE Zhixi, et al. A self-adapting division ray-tracing method in the long baseline acoustic positioning[J]. Marine Science Bulletin, 2015, 34(5):491-498. | |
[20] | 王振杰, 刘杨范, 赵爽, 等. K-Means++的声速剖面精简方法[J]. 哈尔滨工程大学学报, 2020, 41(7):985-990. |
WANG Zhenjie, LIU Yangfan, ZHAO Shuang, et al. Streamlined method for sound velocity profile based on K-Means++[J]. Journal of Harbin Engineering University, 2020, 41(7):985-990. | |
[21] | DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica: the International Journal for Geographic Information and Geovisualization, 1973, 10(2):112-122. |
[22] | ZHAO Dineng, WU Ziyin, ZHOU Jieqiong, et al. A new method of automatic SVP optimization based on MOV algorithm[J]. Marine Geodesy, 2015, 38(3):225-240. |
[23] | 赵荻能, 吴自银, 周洁琼, 等. 声速剖面精简运算的改进D-P算法及其评估[J]. 测绘学报, 2014, 43(7):681-689. |
ZHAO Dineng, WU Ziyin, ZHOU Jieqiong, et al. A method for streamlining and assessing sound velocity profiles based on improved D-P algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7):681-689. | |
[24] | 赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10):1786-1794. DOI: 10.11947/j.AGCS.2017.20170276. |
ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1786-1794. DOI: 10.11947/j.AGCS.2017.20170276. | |
[25] | 辛明真, 阳凡林, 薛树强, 等. 顾及波束入射角的常梯度声线跟踪水下定位算法[J]. 测绘学报, 2020, 49(12):1535-1542. DOI: 10.11947/j.AGCS.2020.20190518. |
XIN Mingzhen, YANG Fanlin, XUE Shuqiang, et al. A constant gradient sound ray tracing underwater positioning algorithm considering incident beam angle[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12):1535-1542. DOI: 10.11947/j.AGCS.2020.20190518. | |
[26] | LIU Yixu, XUE Shuqiang, QU Guoqing, et al. Influence of the ray elevation angle on seafloor positioning precision in the context of acoustic ray tracing algorithm[J]. Applied Ocean Research, 2020, 105:102403. |
[27] | 王薪普, 薛树强, 曲国庆, 等. 水下定位声线扰动分析与分段指数权函数设计[J]. 测绘学报, 2021, 50(7):982-989. DOI: 10.11947/j.AGCS.2021.20200424. |
WANG Xinpu, XUE Shuqiang, QU Guoqing, et al. Disturbance analysis of underwater positioning acoustic ray and design of piecewise exponential weight function[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7):982-989. DOI: 10.11947/j.AGCS.2021.20200424. | |
[28] | WATANABE S I, ISHIKAWA T, YOKOTA Y, et al. GARPOS: analysis software for the GNSS-A seafloor positioning with simultaneous estimation of sound speed structure[J]. Frontiers in Earth Science, 2020, 8:508. |
[29] | 薛树强, 杨元喜, 肖圳, 等. 全球导航卫星系统-声呐组合观测模型分类体系[J]. 哈尔滨工程大学学报, 2023, 44(11):1857-1868. |
XUE Shuqiang, YANG Yuanxi, XIAO Zhen, et al. Global navigation satellite system-acoustic combined observation model classification system[J]. Journal of Harbin Engineering University, 2023, 44(11):1857-1868. | |
[30] | XUE Shuqiang, YANG Yuanxi, YANG Wenlong, et al. GNSS-A network solution with zenith acoustic delay estimation[J]. Marine Geodesy, 2024, 47(3):237-268. |
[31] | RAJABI M H, TOLOIE E A, MOTADEL M R. A comprehensive review on meta-heuristic algorithms and their classification with novel approach[J]. Journal of Applied Research on Industrial Engineering, 2021, 8(1):63-89. |
[32] | HOLLAND J H. Genetic algorithms[J]. Scientific American, 1992, 267(1):66-72. |
[33] | SIVANANDAM S N, DEEPA S N. Genetic algorithms[M]//Introduction to Genetic Algorithms. Heidelberg: Springer Berlin Heidelberg, 2007: 15-37. |
[34] | 王小平, 曹立明. 遗传算法:理论、应用与软件实现[M]. 西安: 西安交通大学出版社, 2002. |
WANG Xiaoping, CAO Liming. Genetic algorithm: theory, application and software realization[M]. Xi'an: Xi'an Jiaotong University Press, 2002. | |
[35] | XU Kunpeng, ZHAO Lei, LI Kun, et al. Estimation of crop biomass using GF-3 polarization SAR data based on genetic algorithm feature selection[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(04):126. |
[36] | 刘智敏, 刘经南, 刘晖. 基于遗传算法的GPS单历元单点定位方法研究[J]. 武汉大学学报(信息科学版), 2007, 32(1):35-38. |
LIU Zhimin, LIU Jingnan, LIU Hui. GPS single-point positioning based on genetic algorithm[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1):35-38. | |
[37] | 冯士筰, 李凤歧, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999. |
FENG Shizuo, LI Fengqi, LI Shaojing. Introduction to marine science [M]. Beijing: Higher Education Press, 1999. | |
[38] | 张旭, 张永刚, 张胜军, 等. 菲律宾海的声速剖面结构特征及季节性变化[J]. 热带海洋学报, 2009, 28(6):23-34. |
ZHANG Xu, ZHANG Yonggang, ZHANG Shengjun, et al. Distribution and seasonal variability of sound speed profile in the Philippine Sea[J]. Journal of Tropical Oceanography, 2009, 28(6):23-34. | |
[39] | 李攀峰, 颜中辉, 杜润林, 等. 菲律宾海中部海域声速剖面结构及季节性变化[J]. 海洋地质与第四纪地质, 2021, 41(1):147-157. |
LI Panfeng, YAN Zhonghui, DU Runlin, et al. Structures and seasonal variation of sound velocity profiles in the central Philippine Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(1):147-157. | |
[40] | 赵爽, 王振杰, 聂志喜, 等. 顾及声速结构时域变化的海底基准站高精度定位方法[J]. 测绘学报, 2023, 52(1):41-50. DOI: 10.11947/j.AGCS.2023.20210326. |
ZHAO Shuang, WANG Zhenjie, NIE Zhixi, et al. Precise positioning method for seafloor geodetic stations based on the temporal variation of sound speed structure[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1):41-50. DOI: 10.11947/j.AGCS.2023.20210326. |
[1] | 肖元弼, 彭认灿, 董箭, 马政伟, 刘聚. 顾及面积差的层内等效二段线替代法优化声速剖面[J]. 测绘学报, 2023, 52(12): 2028-2038. |
[2] | 闫凤池, 王振杰, 赵爽, 聂志喜, 孙振, 李伟嘉. 顾及双程声径的常梯度声线跟踪水下定位算法[J]. 测绘学报, 2022, 51(1): 31-40. |
[3] | 纪雪, 唐秋华, 陈义兰, 李杰, 丁德秋. 联合支持向量机和增强学习算法的多波束声学底质分类[J]. 测绘学报, 2021, 50(7): 972-981. |
[4] | 刘远刚, 李少华, 蔡永香, 何贞铭, 马潇雅, 李鹏程, 郭庆胜, 何宗宜. 移位安全区约束下的建筑物群移位免疫遗传算法[J]. 测绘学报, 2021, 50(6): 812-822. |
[5] | 辛明真, 阳凡林, 薛树强, 王振杰, 韩云峰. 顾及波束入射角的常梯度声线跟踪水下定位算法[J]. 测绘学报, 2020, 49(12): 1535-1542. |
[6] | 王华斌, 韩旻, 王光辉, 李玉. 遥感影像要素提取的可变结构卷积神经网络方法[J]. 测绘学报, 2019, 48(5): 583-596. |
[7] | 闫利, 谭骏祥, 刘华, 陈长军. 融合遗传算法和ICP的地面与车载激光点云配准[J]. 测绘学报, 2018, 47(4): 528-536. |
[8] | 张海波, 汪长城, 朱建军, 付海强. 利用ESAR极化数据的复杂地形区森林地上生物量估算[J]. 测绘学报, 2018, 47(10): 1353-1362. |
[9] | 郑根, 张红梅, 冯磊, 赵建虎. 基于面积差的声速剖面自适应简化方法[J]. 测绘学报, 2018, 47(10): 1415-1423. |
[10] | 周鑫鑫, 吴长彬, 孙在宏, 丁远, 贺涛. 小规模地理场景中点要素三维注记优化配置算法[J]. 测绘学报, 2016, 45(12): 1476-1484. |
[11] | 刘丽峰, 杨飞, 张树清, 孔维华, 王殷行. 应用人工免疫算法快速规划3D TF/TA2航线[J]. 测绘学报, 2015, 44(4): 462-470. |
[12] | 余丽 陆锋. 交通网络旅行商路径优化的遗传禁忌搜索算法[J]. 测绘学报, 2014, 43(11): 1197-1203. |
[13] | 于海璁 陆锋. 一种基于遗传算法的多模式多标准路径规划方法[J]. 测绘学报, 2014, 43(1): 89-96. |
[14] | 童晓冲 贲进 汪滢. 利用数值投影变换构建全球六边形离散格网[J]. , 2013, 42(2): 268-276. |
[15] | 王家耀,谢明霞,郭建忠,陈科. 基于相似性保持和特征变换的高维数据聚类改进算法[J]. 测绘学报, 2011, 40(3): 269-275. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||