测绘学报 ›› 2024, Vol. 53 ›› Issue (7): 1401-1416.doi: 10.11947/j.AGCS.2024.20230327

• 摄影测量与遥感 • 上一篇    下一篇

面向土地覆盖精准分类的遥感特征参数优选方法

陈超1(), 梁锦涛2,3, 杨刚4(), 孙伟伟4, 龚绍军3, 王建强5   

  1. 1.苏州科技大学地理科学与测绘工程学院,江苏 苏州 215009
    2.中国地质大学(武汉)地球物理与空间信息学院,湖北 武汉 430074
    3.浙江海洋大学海洋科学与技术学院,浙江 舟山 316022
    4.宁波大学地理与空间信息技术系,浙江 宁波 315211
    5.浙江省水文地质工程地质大队,浙江 宁波 315012
  • 收稿日期:2023-08-08 发布日期:2024-08-12
  • 通讯作者: 杨刚 E-mail:chenchao@usts.edu.cn;yanggang@nbu.edu.cn
  • 作者简介:陈超(1982—),男,博士,教授,研究方向为海岸带环境遥感。E-mail:chenchao@usts.edu.cn
  • 基金资助:
    国家自然科学基金(42171311);浙江省省级专项资金(2024010)

Remote sensing parameters optimization for accurate land cover classification

Chao CHEN1(), Jintao LIANG2,3, Gang YANG4(), Weiwei SUN4, Shaojun GONG3, Jianqiang WANG5   

  1. 1.School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
    2.School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
    3.Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
    4.Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
    5.Zhejiang Institute of Hydrogeology and Engineering Geology, Ningbo 315012, China
  • Received:2023-08-08 Published:2024-08-12
  • Contact: Gang YANG E-mail:chenchao@usts.edu.cn;yanggang@nbu.edu.cn
  • About author:CHEN Chao (1982—), male, PhD, professor, majors in remote sensing of coastal environment. E-mail: chenchao@usts.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42171311);Provincial Special Fund Project of Zhejiang Province(2024010)

摘要:

在显著气候变化叠加人类活动干扰的背景下,可持续的自然资源管理对于精准掌握土地覆盖信息的需求不断提升。为应对地表形态的复杂性、地物类型的多样性、遥感图像特征的非线性给传统遥感图像分类方法带来的挑战,本文基于随机森林Gini指数,提出了一种10%阈值决策的遥感特征参数优选方法,旨在筛选出最优的遥感特征参数组合,达到最佳土地覆盖分类效果。首先,选择光谱特征、纹理特征、温热特征、高程特征、主成分特征组成遥感影像堆栈。然后,设置多组决策树对特征贡献度进行交叉验证,并根据特征重要性的归一化均值确定特征排序。最后,设定阈值,筛选出符合要求的遥感特征参数,并迭代过程。选择覆盖江苏盐城自然保护区的Sentinel-2遥感图像开展试验,结果表明,本文方法筛选出的遥感特征参数代表性好,与CART、SVM、KNN和只使用波段信息的RF相比,分类结果地物边界清晰,类别属性准确,总体精度和Kappa系数分别为96.20%和0.955 6。本文研究能够为区域空间规划和可持续发展提供技术支持。

关键词: 土地覆盖分类, 随机森林, 特征优选, 递归特征消除, Gini指数

Abstract:

Sustainable natural resources management requires considerable accurate land cover information given the evident climate change impacts and human disturbances on wetlands. It is characterized by the convergence of numerous materials and energies, resulting in fragmented landscapes and frequent land cover changes. To address the challenges posed by the complexity of landforms, diversity of land cover types, and non-linearity of remote sensing image features in traditional remote sensing image classification methods, this paper proposes a feature parameter selection method based on the Gini index of random forests, with a 10% threshold decision. The aim is to identify the optimal combination of remote sensing feature parameters. Firstly, spectral features, texture features, thermal features, elevation features, and principal component features are selected to form a stack of remote sensing images. Then, multiple decision trees are set up to cross-validate the contributions of the features, and the feature ranking is determined based on the normalized mean importance of the features. Finally, a threshold is set to select the remote sensing feature parameters that meet the requirements, and the process is iterated. Experiments are conducted using Sentinel-2 remote sensing images covering the Yancheng Nature Reserve in Jiangsu province. The results show that the remote sensing feature parameters selected by this method have good representativeness. Compared with CART, SVM, KNN, and RF methods that only use band information, the proposed method produces clearer boundaries and more accurate category attributes in the classification results, with an overall accuracy of 96.20% and a Kappa coefficient of 0.955 6. This research can provide technical support for regional spatial planning and sustainable development.

Key words: land cover classification, random forest, feature optimizing, feature recursive elimination, Gini index

中图分类号: