
测绘学报 ›› 2024, Vol. 53 ›› Issue (7): 1384-1400.doi: 10.11947/j.AGCS.2024.20230455
收稿日期:2023-10-07
发布日期:2024-08-12
作者简介:杨军(1973—),男,博士,教授,博士生导师,主要研究方向为三维模型空间分析、遥感大数据智能解译、深度学习。E-mail:yangj@mail.lzjtu.cn
基金资助:
Jun YANG1,2(
), Hengjing XIE1, Hongchao FAN3, Haowen YAN1
Received:2023-10-07
Published:2024-08-12
About author:YANG Jun (1973—), male, PhD, professor, PhD supervisor, majors in 3D model spatial analysis, intelligent interpretation of remotely sensed big data, deep learning. E-mail: yangj@mail.lzjtu.cn
Supported by:摘要:
针对传统神经网络架构搜索需要耗费大量时间用于超网训练,搜索效率较低,搜索得到的模型无法高效解决遥感影像中多尺度目标检测困难、背景复杂度高的问题,本文提出采用多尺度熵神经网络架构搜索的方法进行遥感影像目标检测。首先,在搜索空间的基础模块中加入特征分离卷积以代替残差模块中的常规卷积,减少遥感影像中由于背景复杂度高而造成的信息间干扰,提高网络模型在复杂背景下的检测性能;然后,引入最大熵原理,计算搜索空间中每个候选网络的多尺度熵,将多尺度熵与特征金字塔网络相结合,以兼顾遥感影像大、中、小目标的检测;最后,在不进行参数训练的情况下利用渐进式进化算法搜索得到多尺度熵最大的网络模型用于目标检测任务,在保证模型检测精度的同时,提升网络搜索效率。本文方法在RSOD、DIOR和DOTA数据集上的平均检测精度均值分别达到93.1%、75.5%和73.6%,网络搜索时间为8.1 h。试验结果表明,与当前基准方法相比,本文方法能够显著提升网络的搜索效率,在目标检测任务中更好地结合了不同尺度下的特征并解决了影像背景复杂度高的问题。
中图分类号:
杨军, 解恒静, 范红超, 闫浩文. 遥感影像目标检测多尺度熵神经网络架构搜索[J]. 测绘学报, 2024, 53(7): 1384-1400.
Jun YANG, Hengjing XIE, Hongchao FAN, Haowen YAN. Multi-scale entropy neural architecture search for object detection in remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1384-1400.
表1
数据预处理前后结果的对比"
| 不同数据集的预处理 | 浮点运算数 | 参数量 | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|
| 未经过数据预处理(RSOD) | 207.63×109 | 30.29×106 | 92.4 | 99.2 | 98.5 | 67.6 | 89.8 | 94.7 |
| 经过数据预处理(RSOD) | 207.63×109 | 30.29×106 | 93.1 | 99.2 | 98.7 | 68.6 | 89.9 | 95.4 |
| 未经过数据预处理(DIOR) | 144.41×109 | 30.04×106 | 72.1 | 90.8 | 80.7 | 38.5 | 68.0 | 84.8 |
| 经过数据预处理(DIOR) | 144.41×109 | 30.04×106 | 75.5 | 92.6 | 84.4 | 44.3 | 72.1 | 87.0 |
| 未经过数据预处理(DOTA) | 208.15×109 | 30.31×106 | 70.8 | 87.5 | 81.6 | 50.0 | 76.6 | 82.5 |
| 经过数据预处理(DOTA) | 208.15×109 | 30.31×106 | 73.6 | 89.2 | 83.9 | 53.4 | 80.5 | 85.0 |
表3
在RSOD数据集上不同网络模型的对比"
| 网络模型 | 浮点运算数 | 参数量 | 网络搜索时间/h | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|---|
| Faster R-CNN | 841.40×109 | 41.14×106 | — | 84.9 | 99.5 | 96.4 | 61.0 | 83.0 | 88.0 |
| ResNet-SB | 298.57×109 | 46.89×106 | — | 77.4 | 97.5 | 90.5 | 23.3 | 66.4 | 82.3 |
| VarifocalNet | 218.57×109 | 32.49×106 | — | 87.8 | 99.1 | 96.9 | 56.0 | 82.9 | 91.3 |
| NAS-FCOS | 216.31×109 | 38.67×106 | 11.4 | 77.3 | 98.0 | 89.2 | 26.9 | 75.0 | 83.1 |
| DetNAS | 201.67×109 | 32.79×106 | 12.6 | 85.5 | 99.5 | 97.9 | 63.2 | 83.2 | 88.6 |
| 本文方法 | 207.63×109 | 30.29×106 | 8.1 | 93.1 | 99.2 | 98.7 | 68.6 | 89.9 | 95.4 |
表5
在DIOR数据集上不同网络模型的对比"
| 网络模型 | 浮点运算数 | 参数量 | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|
| Faster R-CNN | 798.04×109 | 32.95×106 | 66.1 | 88.8 | 74.2 | 12.2 | 50.8 | 76.2 |
| ResNet-SB | 216.40×109 | 41.22×106 | 52.0 | 76.4 | 57.5 | 9.7 | 31.2 | 62.1 |
| VarifocalNet | 159.35×109 | 32.49×106 | 70.1 | 89.6 | 78.3 | 35.2 | 64.6 | 83.0 |
| NAS-FCOS | 230.62×109 | 38.15×106 | 55.7 | 80.4 | 60.6 | 10.4 | 35.8 | 65.5 |
| DetNAS | 208.47×109 | 25.38×106 | 67.8 | 91.3 | 78.3 | 36.1 | 60.6 | 74.4 |
| 本文方法 | 144.41×109 | 30.04×106 | 75.5 | 92.6 | 84.4 | 44.3 | 72.1 | 87.0 |
表6
在DIOR数据集上不同目标类别的检测精度对比"
| 类别 | Faster R-CNN | ResNet-SB | VarifocalNet | NAS-FCOS | DetNAS | 本文方法 |
|---|---|---|---|---|---|---|
| 飞机 | 81.5 | 67.8 | 72.7 | 75.5 | 80.6 | 81.3 |
| 机场 | 66.0 | 42.2 | 79.9 | 52.2 | 58.2 | 81.6 |
| 棒球场 | 86.5 | 77.6 | 83.2 | 83.5 | 85.4 | 86.0 |
| 篮球场 | 81.0 | 63.9 | 85.5 | 68.7 | 81.9 | 90.4 |
| 桥梁 | 43.7 | 31.8 | 48.8 | 27.5 | 55.3 | 60.0 |
| 烟囱 | 81.7 | 74.7 | 84.0 | 80.0 | 82.0 | 83.6 |
| 水坝 | 55.0 | 36.5 | 73.3 | 35.4 | 58.5 | 77.1 |
| 高速公路服务区 | 70.1 | 44.0 | 80.4 | 53.1 | 68.7 | 85.6 |
| 高速公路收费站 | 74.3 | 63.3 | 76.0 | 57.4 | 76.4 | 81.0 |
| 高尔夫球场 | 61.8 | 43.9 | 80.9 | 56.3 | 62.2 | 86.8 |
| 田径场 | 82.2 | 65.6 | 81.6 | 65.5 | 81.4 | 86.7 |
| 港口 | 41.7 | 26.3 | 41.7 | 34.0 | 51.4 | 52.4 |
| 立交桥 | 57.0 | 44.3 | 61.1 | 38.9 | 61.9 | 68.2 |
| 船舶 | 47.0 | 43.1 | 49.8 | 48.6 | 48.7 | 54.5 |
| 体育场 | 77.9 | 69.2 | 86.4 | 67.9 | 81.2 | 89.0 |
| 储油罐 | 67.3 | 62.5 | 58.7 | 71.3 | 71.0 | 64.6 |
| 网球场 | 90.4 | 79.9 | 86.0 | 82.0 | 89.5 | 89.1 |
| 火车站 | 49.2 | 19.2 | 71.1 | 25.4 | 52.1 | 76.2 |
| 车辆 | 46.7 | 42.0 | 43.4 | 47.0 | 53.0 | 53.2 |
| 风车 | 56.1 | 43.2 | 61.2 | 43.3 | 56.5 | 66.4 |
表7
在DOTA数据集上不同网络模型的对比"
| 网络模型 | 浮点运算数 | 参数量 | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|
| Faster R-CNN | 264.11×109 | 41.53×106 | 57.3 | 81.6 | 66.3 | 35.5 | 62.3 | 68.7 |
| ResNet-SB | 263.78×109 | 41.19×106 | 61.2 | 85.3 | 72.1 | 38.5 | 66.5 | 75.0 |
| VarifocalNet | 245.69×109 | 32.52×106 | 66.1 | 86.7 | 77.1 | 45.5 | 70.0 | 79.0 |
| NAS-FCOS | 249.36×109 | 38.69×106 | 54.5 | 80.6 | 62.2 | 27.3 | 58.8 | 69.0 |
| DetNAS | 270.02×109 | 29.20×106 | 58.4 | 84.0 | 68.5 | 42.6 | 62.2 | 65.9 |
| 本文方法 | 208.15×109 | 30.31×106 | 73.6 | 89.2 | 83.9 | 53.4 | 80.5 | 85.0 |
表8
在DOTA数据集上不同目标类别的检测精度对比"
| 类别 | FasterR-CNN | ResNet-SB | VarifocalNet | FCOSNAS- | DetNAS | 本文方法 |
|---|---|---|---|---|---|---|
| 飞机 | 74.5 | 74.9 | 81.0 | 73.8 | 75.1 | 83.7 |
| 船舶 | 43.8 | 43.2 | 56.6 | 42.5 | 53.5 | 58.0 |
| 储油罐 | 46.3 | 47.5 | 60.6 | 46.6 | 52.6 | 60.5 |
| 棒球场 | 59.4 | 65.4 | 65.9 | 63.0 | 55.9 | 78.2 |
| 网球场 | 87.9 | 88.3 | 93.1 | 85.3 | 88.8 | 94.5 |
| 篮球场 | 76.5 | 77.2 | 79.8 | 71.7 | 71.0 | 89.9 |
| 操场 | 64.0 | 70.0 | 71.6 | 36.8 | 59.9 | 83.3 |
| 港口 | 59.3 | 62.9 | 67.7 | 56.5 | 61.3 | 74.5 |
| 桥梁 | 43.8 | 50.5 | 56.6 | 39.6 | 54.8 | 77.3 |
| 大型车辆 | 63.6 | 64.7 | 73.7 | 61.8 | 66.7 | 76.4 |
| 小型车辆 | 37.1 | 38.8 | 47.9 | 36.4 | 42.2 | 52.3 |
| 直升机 | 53.8 | 67.6 | 67.0 | 58.4 | 62.0 | 77.1 |
| 环形交叉路口 | 54.1 | 58.6 | 65.3 | 54.7 | 51.0 | 79.1 |
| 足球场 | 58.7 | 66.7 | 47.1 | 51.8 | 47.0 | 60.3 |
| 游泳池 | 37.6 | 42.4 | 48.4 | 38.8 | 34.4 | 55.3 |
表10
主干网络各尺度在不同权重比下的比较"
| α3:α4:α5 | 浮点运算数 | 参数量 | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|
| 1∶1∶1 | 206.28×109 | 28.60×106 | 91.3 | 99.2 | 98.1 | 65.0 | 88.0 | 94.0 |
| 1∶1∶2 | 206.31×109 | 29.84×106 | 92.1 | 99.2 | 98.5 | 67.7 | 87.7 | 94.5 |
| 1∶1∶3 | 207.92×109 | 29.93×106 | 92.8 | 99.2 | 98.6 | 68.5 | 9.5 | 95.2 |
| 1∶1∶4 | 207.63×109 | 30.29×106 | 93.1 | 99.2 | 98.7 | 68.6 | 89.9 | 95.4 |
| 1∶1∶5 | 207.18×109 | 30.60×106 | 92.9 | 99.2 | 98.7 | 68.4 | 89.8 | 95.2 |
| 1∶1∶6 | 208.39×109 | 30.12×106 | 93.0 | 99.2 | 98.7 | 68.3 | 90.3 | 95.3 |
| 1∶1∶7 | 207.95×109 | 30.91×106 | 92.8 | 99.2 | 98.5 | 66.9 | 90.2 | 95.4 |
| 1∶1∶8 | 208.01×109 | 29.96×106 | 92.2 | 99.2 | 98.3 | 64.8 | 89.6 | 94.8 |
表11
RSOD数据集上的消融试验"
| 模型 | 说明 | 浮点运算数 | 参数量 | 网络搜索时间/h | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|---|---|
| Model-1 | Baseline | 203.83×109 | 28.86×106 | 7.5 | 88.9 | 99.0 | 97.9 | 57.3 | 86.0 | 92.0 |
| Model-2 | Baseline+渐进式进化算法 | 199.84×109 | 26.85×106 | 6.2 | 89.0 | 98.9 | 97.9 | 56.8 | 86.2 | 92.3 |
| Model-3 | Baseline+FSResBlock | 209.61×109 | 30.33×106 | 9.2 | 92.9 | 99.2 | 98.6 | 68.3 | 90.1 | 95.4 |
| Model-4 | Baseline+渐进式进化算法+FSResBlock | 207.63×109 | 30.29×106 | 8.1 | 93.1 | 99.2 | 98.7 | 68.6 | 89.9 | 95.4 |
| [1] | 周鹏, 杨军. 采用神经网络架构搜索的遥感影像分割方法[J]. 西安电子科技大学学报, 2021, 48(5):47-57. |
| ZHOU Peng, YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search[J]. Journal of Xidian University, 2021, 48(5):47-57. | |
| [2] | 陈丁, 万刚, 李科. 多层特征与上下文信息相结合的光学遥感影像目标检测[J]. 测绘学报, 2019, 48(10):1275-1284. DOI: 10.11947/j.AGCS.2019.20180431. |
| CHEN Ding, WAN Gang, LI Ke. Object detection in optical remote sensing images based on combination of multi-layer feature and context information[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10):1275-1284. DOI: 10.11947/j.AGCS.2019.20180431. | |
| [3] | CHEN Zhanlong, LI Shuangjiang, XU Yongyang, et al. Correg-YOLOv3: a method for dense buildings detection in high-resolution remote sensing images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2):51-61. DOI: 10.11947/j.JGGS.2023.0206. |
| [4] | 杨军, 韩鹏飞. 采用神经网络架构搜索的高分遥感影像目标检测 [J/OL]. 吉林大学学报 (工学版): 1-12 [2023-07-01]. DOI: 10.13229/j.cnki.jdxbgxb20221472. |
| YANG Jun, HAN Pengfei. Object detection of high-resolution remote sensing images by neural architecture search [J/OL]. Journal of Jilin University (Engineering Edition): 1-12 [2023-07-01]. DOI: 10.13229/j.cnki.jdxbgxb20221472. | |
| [5] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2014: 580-587. |
| [6] | ZOPH B, LE Q V. Neural architecture search with reinforcement learning [EB/OL]. [2023-08-01]. https://openreview.net/pdf?id=r1Ue8Hcxg. |
| [7] | PHAM H, GUAN M, ZOPH B, et al. Efficient neural architecture search via parameters sharing [C]//Proceedings of 2018 International Conference on Machine Learning. Stockholm: Springer, 2018: 4095-4104. |
| [8] | REAL E, AGGARWAL A, HUANG Y, et al. Regularized evolution for image classifier architecture search [C]//Proceedings of 2019 AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 4780-4789. |
| [9] | LIU H, SIMONYAN K, YANG Y. DARTS: differentiable architecture search [EB/OL]. [2023-08-01]. https://arxiv.org/pdf/1806.09055v2. |
| [10] | GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7036-7045. |
| [11] | LIANG Tingting, WANG Yongtao, TANG Zhi, et al. OPANAS: one-shot path aggregation network architecture search for object detection[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10195-10203. |
| [12] | WANG Ning, GAO Yang, CHEN Hao, et al. NAS-FCOS: fast neural architecture search for object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11940-11948. |
| [13] | CHEN Yukang, YANG Tong, ZHANG Xiangyu, et al. DetNAS: backbone search for object detection[J]. Advances in Neural Information Processing Systems, 2019, 32:6638-6648. |
| [14] | PENG Cheng, LI Yangyang, SHANG Ronghua, et al. RSBNet: one-shot neural architecture search for a backbone network in remote sensing image recognition[J]. Neurocomputing, 2023, 537:110-127. |
| [15] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
| [16] | WU Yuxin, HE Kaiming. Group normalization [C]//Proceedings of 2018 European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
| [17] | CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1724-1734. |
| [18] | WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11534-11542. |
| [19] | HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. |
| [20] | KESAVAN H K, KAPUR J N. The generalized maximum entropy principle[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(5):1042-1052. |
| [21] | NIELSEN F, NOCK R. MaxEnt upper bounds for the differential entropy of univariate continuous distributions[J]. IEEE Signal Processing Letters, 2017, 24(4):402-406. |
| [22] | CHEN Qiang, WANG Yingming, YANG Tong, et al. You only look one-level feature[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13039-13048. |
| [23] | NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1520-1528. |
| [24] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 15:1125-1131. |
| [25] | TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9627-9636. |
| [26] | LI Xiang, WANG Wenhai, WU Lijun, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection [J]. Advances in Neural Information Processing Systems, 2020, 33:21002-21012. |
| [27] | LONG Yang, GONG Yiping, XIAO Zhifeng, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2486-2498. |
| [28] | LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:296-307. |
| [29] | XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3974-3983. |
| [30] | XIAO Bin, TANG Han, JIANG Yanjun, et al. Brightness and contrast controllable image enhancement based on histogram specification[J]. Neurocomputing, 2018, 275:2798-2809. |
| [31] | HE Zhezhi, RAKIN A S, FAN Deliang. Parametric noise injection: trainable randomness to improve deep neural network robustness against adversarial attack[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 588-597. |
| [32] | REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. |
| [33] | WIGHTMAN R, TOUVRON H, JÉGOU H. ResNet strikes back: an improved training procedure in timm [EB/OL]. [2023-08-01]. https://openreview.net/pdf?id=NG6MJnVl6M5. |
| [34] | ZHANG Haoyang, WANG Ying, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 8514-8523. |
| [1] | 季顺平, 刘瑾, 高建, 龚健雅. 多视影像深度学习密集匹配三维重建智能框架[J]. 测绘学报, 2025, 54(9): 1633-1646. |
| [2] | 唐康, 孙玉, 仲逍阳, 高嘉良, 陈崇成. 路侧违停车辆移动影像检测方法[J]. 测绘学报, 2025, 54(9): 1712-1726. |
| [3] | 谢亚坤, 赵耀纪, 涂佳星, 夏瑞丰, 冯德俊, 刘苏凝, 陈虹宇, 朱军. 融合边缘与全局特征的遥感影像显著性目标检测方法[J]. 测绘学报, 2025, 54(7): 1265-1279. |
| [4] | 董子博, 王竞雪, 卜丽静, 房琳, 许峥辉. MAFNet:基于多尺度空洞融合网络的遥感影像建筑物提取方法[J]. 测绘学报, 2025, 54(6): 1094-1106. |
| [5] | 李海峰, 郭旺, 吴梦伟, 彭程里, 朱庆, 刘瑜, 陶超. 视觉-语言联合的遥感地物概念表达与智能解译:原理、挑战与机遇[J]. 测绘学报, 2025, 54(5): 853-872. |
| [6] | 王超, 陈天宇, 张同, AhmedTanvir, 纪立强, 谢涛, 杨佳俊, 王帅. 基于全局差分增强模块和平衡惩罚损失的多源光学遥感影像变化检测[J]. 测绘学报, 2025, 54(5): 873-887. |
| [7] | 赵一鸣, 胡克林, 涂可龙, 卿雅娴, 杨超, 祁昆仑, 吴华意. 基于SAR与光学遥感影像融合的多标签场景分类方法[J]. 测绘学报, 2025, 54(5): 911-923. |
| [8] | 张新长, 齐霁, 陶超, 傅思扬, 郭明宁, 阮永检. 光学遥感影像去云研究进展、挑战与趋势[J]. 测绘学报, 2025, 54(4): 603-620. |
| [9] | 侯昭阳, 闫浩文, 张黎明, 马荣娟, 屈睿涛. 基于耦合神经P系统与区块链的遥感影像零水印版权保护方法[J]. 测绘学报, 2025, 54(12): 2247-2261. |
| [10] | 龚希, 陈占龙, 郑恒强, 胡胜, 张洪艳. 融合迁移特征空间和语义信息的遥感影像场景分类方法[J]. 测绘学报, 2025, 54(11): 2009-2025. |
| [11] | 张志力, 姜慧伟, 胡翔云. 面向极简交互的遥感地物精确批量提取框架[J]. 测绘学报, 2025, 54(10): 1863-1876. |
| [12] | 龚良雄, 李星华, 程远明, 赵兴友, 谢仁平, 王红根. 时空差异增强与自适应特征融合的轻量级遥感影像变化检测网络[J]. 测绘学报, 2025, 54(1): 136-153. |
| [13] | 李佳铃, 齐霁, 鲁伟鹏, 陶超. 面向城市功能区分类的光学遥感影像-OSM数据联合自监督学习方法[J]. 测绘学报, 2025, 54(1): 154-164. |
| [14] | 鄢薪, 慎利, 潘俊杰, 戴延帅, 王继成, 郑晓莉, 李志林. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J]. 测绘学报, 2024, 53(8): 1586-1597. |
| [15] | 谢志伟, 翟帅智, 张丰源, 陈旻, 孙立双. 面向对象高分影像归纳式图神经网络分类法[J]. 测绘学报, 2024, 53(8): 1610-1623. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||