测绘学报 ›› 2024, Vol. 53 ›› Issue (8): 1465-1479.doi: 10.11947/j.AGCS.2024.20230199
• 时空大数据的地理认知专栏 • 下一篇
收稿日期:
2023-06-12
发布日期:
2024-09-25
通讯作者:
刘瑜
E-mail:wulun@pku.edu.cn;liuyu@urban.pku.edu.cn
作者简介:
邬伦(1964—),男,博士,教授,主要研究领域为地理信息科学、数字城市等。E-mail:wulun@pku.edu.cn
基金资助:
Lun WU(), Yuanqiao HOU, Yu LIU()
Received:
2023-06-12
Published:
2024-09-25
Contact:
Yu LIU
E-mail:wulun@pku.edu.cn;liuyu@urban.pku.edu.cn
About author:
WU Lun (1964—), male, PhD, professor, majors in geographical information science, digital city, et al. E-mail: wulun@pku.edu.cn
Supported by:
摘要:
随着大数据时代的来临,多源大数据正在兴起,数据驱动研究范式与地理学日益融合。基于个体行为的地理空间大数据可提供对海量个体行为模式的观察,从而实现“由人及地”的社会感知,支持城市管理、交通、公共卫生等不同应用。本文从应用角度,以地理空间大数据为重点,梳理其支持的6种应用范式,按照层次从低到高依次为描述时空分布、识别异常对象、发现普适规律、揭示关联关系、预测未来趋势及优化空间决策。其中,第1个方向是对地理现象和地理要素时空特征的简单刻画;第2~4个方向则注重探寻时空分布特征背后的规律和机理;最后两项,则是在决策层面提供支持。继而,本文指出大数据应用中数据获取、分析方法和应用目标3方面的问题。
中图分类号:
邬伦, 侯远樵, 刘瑜. 大数据的6种地理学应用范式[J]. 测绘学报, 2024, 53(8): 1465-1479.
Lun WU, Yuanqiao HOU, Yu LIU. Six geographic application paradigms of big data[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1465-1479.
[1] | ANDERSON C. The end of theory: the data deluge makes the scientific method obsolete[J]. Wired Magazine, 2008, 16(7): 16-18. |
[2] | MAZZOCCHI F. Could big data be the end of theory in science? A few remarks on the epistemology of data-driven science [J]. EMBO Reports, 2015, 16(10): 1250-1255. |
[3] | 刘瑜. 社会感知视角下的若干人文地理学基本问题再思考[J]. 地理学报, 2016, 71(4): 564-575. |
LIU Yu. Revisiting several basic geographical concepts: a social sensing perspective[J]. Acta Geographica Sinica, 2016, 71(4): 564-575. | |
[4] | 邓敏, 蔡建南, 杨文涛, 等. 多模态地理大数据时空分析方法[J]. 地球信息科学学报, 2020, 22(1): 41-56. |
DENG Min, CAI Jiannan, YANG Wentao, et al. Spatio-temporal analysis methods for multi-modal geographic big data[J]. Journal of Geo-information Science, 2020, 22(1): 41-56. | |
[5] | 朱庆, 付萧. 多模态时空大数据可视分析方法综述[J]. 测绘学报, 2017, 46(10): 1672-1677. |
ZHU Qing, FU Xiao. The review of visual analysis methods of multi-modal spatio-temporal big data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1672-1677. | |
[6] | 吉根林, 赵斌. 面向大数据的时空数据挖掘综述[J]. 南京师大学报(自然科学版), 2014, 37(1): 1-7. |
JI Genlin, ZHAO Bin. A survey of spatiotemporal data mining for big data[J]. Journal of Nanjing Normal University (Natural Science Edition), 2014, 37(1): 1-7. | |
[7] | KUHN T S. The structure of scientific revolutions[M]. 2nd ed. Chicago: University of Chicago Press, 1970. |
[8] | 宋长青. 地理学研究范式的思考[J]. 地理科学进展, 2016, 35(1): 1-3. |
SONG Changqing. On paradigms of geographical research[J]. Progress in Geography, 2016, 35(1): 1-3. | |
[9] | 裴韬, 刘亚溪, 郭思慧, 等. 地理大数据挖掘的本质[J]. 地理学报, 2019, 74(3): 586-598. |
PEI Tao, LIU Yaxi, GUO Sihui, et al. Principle of big geodata mining[J]. Acta Geographica Sinica, 2019, 74(3): 586-598. | |
[10] | HU Junjie, GAO Yong, WANG Xuechen, et al. Recognizing mixed urban functions from human activities using representation learning methods[J]. International Journal of Digital Earth, 2023, 16(1): 289-307. |
[11] | MA Xiaolei, LIU Congcong, WEN Huimin, et al. Understanding commuting patterns using transit smart card data[J]. Journal of Transport Geography, 2017, 58: 135-145. |
[12] | 刘瑜, 康朝贵, 王法辉. 大数据驱动的人类移动模式和模型研究[J]. 武汉大学学报(信息科学版), 2014, 39(6): 660-666. |
LIU Yu, KANG Chaogui, WANG Fahui. Towards big data-driven human mobility patterns and models[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 660-666. | |
[13] | HU Lingqian, SUN Tieshan, WANG Lanlan. Evolving urban spatial structure and commuting patterns: a case study of Beijing, China[J]. Transportation Research Part D: Transport and Environment, 2018, 59: 11-22. |
[14] | HUANG Jie, LEVINSON D, WANG Jiaoe, et al. Job-worker spatial dynamics in Beijing: insights from smart card data[J]. Cities, 2019, 86: 83-93. |
[15] | ZHOU Xingang, CHEN Zifeng, YEH A G O, et al. Workplace segregation of rural migrants in urban China: a case study of Shenzhen using cellphone big data[J]. Environment and Planning B: Urban Analytics and City Science, 2021, 48(1): 25-42. |
[16] | ZHONG Chen, ARISONA S M, HUANG Xianfeng, et al. Detecting the dynamics of urban structure through spatial network analysis[J]. International Journal of Geographical Information Science, 2014, 28(11): 2178-2199. |
[17] | NENKO A, PETROVA M. Emotional geography of st. Petersburg: detecting emotional perception of the city space[C]//Proceedings of Digital Transformation and Global Society: 3rd International Conference. Cham: Springer International Publishing, 2018: 95-110. |
[18] | DE OLIVEIRA T H M, PAINHO M. Emotion & stress mapping: assembling an ambient geographic information-based methodology in order to understand smart cities[C]//Proceedings of 2015 Iberian Conference on Information Systems and Technologies. Aveiro: IEEE, 2015: 1-4. |
[19] | GAO Song, JANOWICZ K, COUCLELIS H. Extracting urban functional regions from points of interest and human activities on location-based social networks[J]. Transactions in GIS, 2017, 21(3): 446-467. |
[20] | HUANG Qunying, WONG D W S. Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us?[J]. International Journal of Geographical Information Science, 2016, 30(9): 1873-1898. |
[21] | KRAEMER M U G, SADILEK A, ZHANG Qian, et al. Mapping global variation in human mobility[J]. Nature Human Behaviour, 2020, 4(8): 800-810. |
[22] | HAWELKA B, SITKO I, BEINAT E, et al. Geo-located Twitter as proxy for global mobility patterns[J]. Cartography and Geographic Information Science, 2014, 41(3): 260-271. |
[23] | ZAGHENI E, GARIMELLA V R K, WEBER I, et al. Inferring international and internal migration patterns from Twitter data[C]//Proceedings of the 23rd International Conference on World Wide Web. New York: ACM Press, 2014: 439-444. |
[24] | ZHANG Jiawei, QI Hua. Data mining and spatial analysis of social media text based on the BERT-CNN model to achieve situational awareness: a case study of COVID-19[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 38-48. |
[25] | 刘瑜, 姚欣, 龚咏喜, 等. 大数据时代的空间交互分析方法和应用再论[J]. 地理学报, 2020, 75(7): 1523-1538. |
LIU Yu, YAO Xin, GONG Yongxi, et al. Analytical methods and applications of spatial interactions in the era of big data[J]. Acta Geographica Sinica, 2020, 75(7): 1523-1538. | |
[26] | ZHU Di, HUANG Zhou, SHI Li, et al. Inferring spatial interaction patterns from sequential snapshots of spatial distributions[J]. International Journal of Geographical Information Science, 2018, 32(4): 783-805. |
[27] | WANG Yuxia, WANG Fahui, ZHANG Yi, et al. Delineating urbanization “source-sink” regions in China: evidence from mobile app data[J]. Cities, 2019, 86: 167-177. |
[28] | 郭磊贤, 吴晓莉, 郭晓芳, 等. 城市网络关系中的广州、深圳城市功能研究--基于对航空客流来源地的比较分析[J]. 热带地理, 2021, 41(2): 229-242. |
GUO Leixian, WU Xiaoli, GUO Xiaofang, et al. Urban functions of Guangzhou and Shenzhen focusing on the city network relationship: a comparative analysis on the original places of air passenger flow[J]. Tropical Geography, 2021, 41(2): 229-242. | |
[29] | GUO Hao, ZHANG Weiyu, DU Haode, et al. Understanding China's urban system evolution from web search index data[J]. EPJ Data Science, 2022, 11(1): 20. |
[30] | DEPERSIN J, BARTHELEMY M. From global scaling to the dynamics of individual cities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2317-2322. |
[31] | LAI Shengjie, ERBACH-SCHOENBERG E Z, PEZZULO C, et al. Exploring the use of mobile phone data for national migration statistics[J]. Palgrave Communications, 2019, 5(1): 34. |
[32] | LONG Ying, LIU Xingjian, ZHOU Jiangping, et al. Early birds, night owls, and tireless/recurring itinerants: an exploratory analysis of extreme transit behaviors in Beijing, China[J]. Habitat International, 2016, 57: 223-232. |
[33] | ZHANG Fan, ZU Jinyan, HU Mingyuan, et al. Uncovering inconspicuous places using social media check-ins and street view images[J]. Computers, Environment and Urban Systems, 2020, 81: 101478. |
[34] | JIN Xiaobin, LONG Ying, SUN Wei, et al. Evaluating cities' vitality and identifying ghost cities in China with emerging geographical data[J]. Cities, 2017, 63: 98-109. |
[35] | XU Zheng, LIU Yunhuai, YEN N Y, et al. Crowdsourcing based description of urban emergency events using social media big data[J]. IEEE Transactions on Cloud Computing, 2020, 8(2): 387-397. |
[36] | O'SULLIVAN D, MANSON S M. Do physicists have geography envy? And what can geographers learn from it?[J]. Annals of the Association of American Geographers, 2015, 105(4): 704-722. |
[37] | DUNBAR R I M. Neocortex size as a constraint on group size in Primates[J]. Journal of Human Evolution, 1992, 22(6): 469-493. |
[38] | MARCHETTI C. Anthropological invariants in travel behavior[J]. Technological Forecasting and Social Change, 1994, 47(1): 75-88. |
[39] | LIU Yu, SUI Zhengwei, KANG Chaogui, et al. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data[J]. PLoS One, 2014, 9(1): e86026. |
[40] | GONZÁLEZ M C, HIDALGO C A, BARABÁSI A L. Understanding individual human mobility patterns[J]. Nature, 2008, 453(7196): 779-782. |
[41] | BROCKMANN D, HUFNAGEL L, GEISEL T. The scaling laws of human travel[J]. Nature, 2006, 439(7075): 462-465. |
[42] | SONG Chaoming, KOREN T, WANG Pu, et al. Modelling the scaling properties of human mobility[J]. Nature Physics, 2010, 6(10): 818-823. |
[43] | ALESSANDRETTI L, SAPIEZYNSKI P, SEKARA V, et al. Evidence for a conserved quantity in human mobility[J]. Nature Human Behaviour, 2018, 2(7): 485-491. |
[44] | PAPPALARDO L, SIMINI F, RINZIVILLO S, et al. Returners and explorers dichotomy in human mobility[J]. Nature Communications, 2015, 6(1): 8166. |
[45] | SCHLÄPFER M, DONG Lei, O'KEEFFE K, et al. The universal visitation law of human mobility[J]. Nature, 2021, 593(7860): 522-527. |
[46] | HUANG Jie, LEVINSON D, WANG Jiaoe, et al. Tracking job and housing dynamics with smartcard data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(50): 12710-12715. |
[47] | JIANG Zhuojun, DONG Lei, WU Lun, et al. Quantifying navigation complexity in transportation networks[J]. PNAS Nexus, 2022, 1(3): pgac126. |
[48] | BETTENCOURT L M A, LOBO J, HELBING D, et al. Growth, innovation, scaling, and the pace of life in cities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(17): 7301-7306. |
[49] | BETTENCOURT L M A. The origins of scaling in cities[J]. Science, 2013, 340(6139): 1438-1441. |
[50] | LI Ruiqi, DONG Lei, ZHANG Jiang, et al. Simple spatial scaling rules behind complex cities[J]. Nature Communications, 2017, 8(1): 1841. |
[51] | SCHLÄPFER M, BETTENCOURT L M A, GRAUWIN S, et al. The scaling of human interactions with city size[J]. Journal of the Royal Society, Interface, 2014, 11(98): 20130789. |
[52] | DONG Lei, HUANG Zhou, ZHANG Jiang, et al. Understanding the mesoscopic scaling patterns within cities[J]. Scientific Reports, 2020, 10(1): 21201. |
[53] | ARCAUTE E, HATNA E, FERGUSON P, et al. Constructing cities, deconstructing scaling laws[J]. Journal of the Royal Society, Interface, 2015, 12(102): 20140745. |
[54] | 刘耀林, 刘启亮, 邓敏, 等. 地理大数据挖掘研究进展与挑战[J]. 测绘学报, 2022, 51(7): 1544-1560. DOI: 10.11947/j.AGCS.2022.20220068. |
LIU Yaolin, LIU Qiliang, DENG Min, et al. Recent advance and challenge in geospatial big data mining[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1544-1560. DOI: 10.11947/j.AGCS.2022.20220068. | |
[55] | QI Meng, HANKEY S. Using street view imagery to predict street-level particulate air pollution[J]. Environmental Science & Technology, 2021, 55(4): 2695-2704. |
[56] | LI Xiaojiang, CAI B Y, QIU Waishan, et al. A novel method for predicting and mapping the occurrence of Sun glare using Google street view[J]. Transportation Research Part C: Emerging Technologies, 2019, 106: 132-144. |
[57] | ZHAO Tianhong, LIANG Xiucheng, TU Wei, et al. Sensing urban soundscapes from street view imagery[J]. Computers, Environment and Urban Systems, 2023, 99: 101915. |
[58] | SUN Maoran, ZHANG Fan, DUARTE F. Automatic building age prediction from street view images[C]//Proceedings of 2021 IEEE International Conference on Network Intelligence and Digital Content. Beijing: IEEE, 2021: 102-106. |
[59] | LI Xiaojiang, ZHANG Chuanrong, LI Weidong. Building block level urban land-use information retrieval based on Google street view images[J]. GIScience & Remote Sensing, 2017, 54(6): 819-835. |
[60] | CHEN Chongxian, LI Haiwei, LUO Weijing, et al. Predicting the effect of street environment on residents & apos; mood states in large urban areas using machine learning and street view images[J]. Science of the Total Environment, 2022, 816: 151605. |
[61] | HANKEY S, ZHANG Wenwen, LE H T K, et al. Predicting bicycling and walking traffic using street view imagery and destination data[J]. Transportation Research Part D: Transport and Environment, 2021, 90: 102651. |
[62] | ZHANG Fan, WU Lun, ZHU Di, et al. Social sensing from street-level imagery: a case study in learning spatio-temporal urban mobility patterns[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 153: 48-58. |
[63] | GEBRU T, KRAUSE J, WANG Yilun, et al. Using deep learning and Google street view to estimate the demographic makeup of neighborhoods across the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): 13108-13113. |
[64] | ROSENFELDER M, WUSSOW M, GUST G, et al. Predicting residential electricity consumption using aerial and street view images[J]. Applied Energy, 2021, 301: 117407. |
[65] | LAW S, PAIGE B, RUSSELL C. Take a look around[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(5): 1-19. |
[66] | MACHICAO J, SPECHT A, VELLENICH D, et al. A deep-learning method for the prediction of socio-economic indicators from street-view imagery using a case study from Brazil[J]. Data Science Journal, 2022, 21: 6. |
[67] | HUANG Jianwei, KWAN M P. Associations between COVID-19 risk, multiple environmental exposures, and housing conditions: a study using individual-level GPS-based real-time sensing data[J]. Applied Geography, 2023, 153: 102904. |
[68] | PAN Haozhi, DEAL B, CHEN Yan, et al. A reassessment of urban structure and land-use patterns: distance to CBD or network-based? —evidence from Chicago[J]. Regional Science and Urban Economics, 2018, 70: 215-228. |
[69] | KRAEMER M U G, YANG C H, GUTIERREZ B, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China[J]. Science, 2020, 368(6490): 493-497. |
[70] | WANG Jianghao, FAN Yichun, PALACIOS J, et al. Global evidence of expressed sentiment alterations during the COVID-19 pandemic[J]. Nature Human Behaviour, 2022, 6(3): 349-358. |
[71] | WU Ruizhi, LUO Guangchun, SHAO Junming, et al. Location prediction on trajectory data: a review[J]. Big Data Mining and Analytics, 2018, 1(2): 108-127. |
[72] | BACKSTROM L, SUN E, MARLOW C. Find me if you can: improving geographical prediction with social and spatial proximity[C]//Proceedings of the 19th International Conference on World Wide Web. New York: ACM Press, 2010: 61-70. |
[73] | MEDINA-SALGADO B, SÁNCHEZ-DELACRUZ E, POZOS-PARRA P, et al. Urban traffic flow prediction techniques: a review[J]. Sustainable Computing: Informatics and Systems, 2022, 35: 100739. |
[74] | YI H, JUNG H, BAE S. Deep neural networks for traffic flow prediction[C]//Proceedings of 2017 IEEE International Conference on Big Data and Smart Computing. Jeju: IEEE, 2017: 328-331. |
[75] | FU Rui, ZHANG Zuo, LI Li. Using LSTM and GRU neural network methods for traffic flow prediction[C]//Proceedings of 2016 Youth Academic Annual Conference of Chinese Association of Automation. Wuhan: IEEE, 2016: 324-328. |
[76] | TIAN Yan, ZHANG Kaili, LI Jianyuan, et al. LSTM-based traffic flow prediction with missing data[J]. Neurocomputing, 2018, 318: 297-305. |
[77] | ZHANG Yang, CHENG Tao, REN Yibin, et al. A novel residual graph convolution deep learning model for short-term network-based traffic forecasting[J]. International Journal of Geographical Information Science, 2020, 34(5): 969-995. |
[78] | JIA Jingyuan, WANG Bo. The development of intelligent operation method of urban public infrastructure driven by accurate spatio-temporal information[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 27-35. |
[79] | TONG Daoqin, MURRAY A T. Spatial optimization in geography[J]. Annals of the Association of American Geographers, 2012, 102(6): 1290-1309. |
[80] | WANG Haibo, SUN Bin, CHEN Liang. An optimization model for planning road networks that considers traffic noise impact[J]. Applied Acoustics, 2022, 192: 108693. |
[81] | SCELLATO S, FORTUNA L, FRASCA M, et al. Traffic optimization in transport networks based on local routing[J]. The European Physical Journal B, 2010, 73: 303-308. |
[82] | WANG Yihong, DE ALMEIDA CORREIRA G H, DE ROMPH E. National and regional road network optimization for Senegal using mobile phone data[C]//Proceedings of the 18th Euro working group on transportation. Delft: [s.n.], 2015: 8-10. |
[83] | XU Yanyan, OLMOS L E, ABBAR S, et al. Deconstructing laws of accessibility and facility distribution in cities[J]. Science Advances, 2020, 6(37): eabb4112. |
[84] | CHEN Xu, WANG Shaohua, LI Huilai, et al. An attention model with multiple decoders for solving p-center problems[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 125: 103526. |
[85] | RAHMAN M M, SZABÓ G. Multi-objective urban land use optimization using spatial data: a systematic review[J]. Sustainable Cities and Society, 2021, 74: 103214. |
[86] | VAZIFEH M M, SANTI P, RESTA G, et al. Addressing the minimum fleet problem in on-demand urban mobility[J]. Nature, 2018, 557(7706): 534-538. |
[87] | ALI J, DYO V. Coverage and mobile sensor placement for vehicles on predetermined routes: a greedy heuristic approach[C]//Proceedings of the 14th International Joint Conference on e-Business and Telecommunications. Madrid: SciTePress, 2017: 83-88. |
[88] | KHAN J A, GHAMRI-DOUDANE Y, BOTVICH D. Autonomous identification and optimal selection of popular smart vehicles for urban sensing—an information-centric approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9529-9541. |
[89] | AGARWAL D, IYENGAR S, SWAMINATHAN M, et al. Modulo: drive-by sensing at city-scale on the cheap[C]//Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies. Ecuador: ACM Press, 2020: 187-197. |
[90] | ZHANG Guiming, ZHU Axing. The representativeness and spatial bias of volunteered geographic information: a review[J]. Annals of GIS, 2018, 24(3): 151-162. |
[91] | ZHAO Ziliang, SHAW S L, XU Yang, et al. Understanding the bias of call detail records in human mobility research[J]. International Journal of Geographical Information Science, 2016, 30(9): 1738-1762. |
[92] | MORSTATTER F, LIU Huan. Discovering, assessing, and mitigating data bias in social media[J]. Online Social Networks and Media, 2017, 1: 1-13. |
[93] | WANG Yu, XU Dingbang, HE Xiao, et al. L2P2: location-aware location privacy protection for location-based services[C]//Proceedings of 2012 IEEE INFOCOM. Orlando: IEEE, 2012: 1996-2004. |
[94] | SHOKRI R, THEODORAKOPOULOS G, LE BOUDEC J Y, et al. Quantifying location privacy[C]//Proceedings of 2011 IEEE Symposium on Security and Privacy. Oakland: IEEE, 2011: 247-262. |
[95] | 高松. 地理空间人工智能的近期研究总结与思考[J]. 武汉大学学报(信息科学版), 2020, 45(12): 1865-1874. |
GAO Song. A review of recent researches and reflections on geospatial artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1865-1874. | |
[96] | 刘瑜, 郭浩, 李海峰, 等. 从地理规律到地理空间人工智能[J]. 测绘学报, 2022, 51(6): 1062-1069. DOI: 10.11947/j.AGCS.2022.20220125. |
LIU Yu, GUO Hao, LI Haifeng, et al. A note on GeoAI from the perspective of geographical laws[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1062-1069. DOI: 10.11947/j.AGCS.2022.20220125. | |
[97] | LIU Yu, LIU Xi, GAO Song, et al. Social sensing: a new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 2015, 105(3): 512-530. |
[1] | 吴华意, 胡秋实, 李锐, 刘朝辉. 城市人口时空分布估计研究进展[J]. 测绘学报, 2022, 51(9): 1827-1847. |
[2] | 刘纪平, 张福浩, 徐胜华. 政务地理空间大数据研究进展综述[J]. 测绘学报, 2017, 46(10): 1678-1687. |
[3] | 王维, 宋淑丽, 王解先, 陈钦明, 朱文耀, 叶碧文. 长三角地区多模GNSS斜路径观测分布及水汽仿真层析[J]. 测绘学报, 2016, 45(2): 164-169. |
[4] | 胡文敏 邸凯昌 岳宗玉 刘召芹. 嫦娥一号激光高度计数据交叉点分析与平差处理[J]. , 2013, 42(2): 218-224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||