测绘学报 ›› 2025, Vol. 54 ›› Issue (5): 819-830.doi: 10.11947/j.AGCS.2025.20240449

• 大地测量学与导航 • 上一篇    下一篇

考虑起伏地形的区域水文重力效应模拟与校验:以三峡库首区为例

朱明涛1(), 张壹2, 马险3, 王林松1,4()   

  1. 1.中国地质大学(武汉)地球物理与空间信息学院,湖北 武汉 430074
    2.浙江大学地球科学学院,浙江 杭州 310027
    3.中国科学院精密测量科学与技术创新研究院,湖北 武汉 430077
    4.中国地质大学(武汉)湖北巴东地质灾害国家野外科学观测研究站,湖北 武汉 430074
  • 收稿日期:2024-11-01 修回日期:2025-03-20 出版日期:2025-06-23 发布日期:2025-06-23
  • 通讯作者: 王林松 E-mail:zhumingtao@cug.edu.cn;wanglinsong@cug.edu.cn
  • 作者简介:朱明涛(2000—),男,博士生,研究方向为地面精密重力测量及其地学应用。E-mail:zhumingtao@cug.edu.cn
  • 基金资助:
    国家自然科学基金(42274110)

Simulation and verification of regional hydrological gravity effect considering undulating terrain: a case study of the head region of Three Gorges Reservoir

Mingtao ZHU1(), Yi ZHANG2, Xian MA3, Linsong WANG1,4()   

  1. 1.School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
    2.School of Earth Science, Zhejiang University, Hangzhou 310027, China
    3.Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430077, China
    4.Badong National Observation and Research Station of Geohazards, China University of Geosciences, Wuhan 430074, China
  • Received:2024-11-01 Revised:2025-03-20 Online:2025-06-23 Published:2025-06-23
  • Contact: Linsong WANG E-mail:zhumingtao@cug.edu.cn;wanglinsong@cug.edu.cn
  • About author:ZHU Mingtao (2000—), male, PhD candidate, majors in ground precision gravity measurement and its application in geology. E-mail: zhumingtao@cug.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42274110)

摘要:

三峡大坝的截流蓄水导致该地区乃至长江流域水文要素发生变化,多数先前使用河道数字高程模型与区域水文模型的研究,侧重于分析简化蓄水模型与区域等效水高的重力响应,未考虑库岸边坡与周边起伏地形的影响。本文基于高分一号(GF-1)卫星影像提取的三峡库首区河道水位边界构建蓄水负荷模型,并利用Delaunay三角剖分方法对复杂水体表面与周边地形进行剖分,通过高精度多面体外部引力场算法模拟了区域水文重力与重力梯度效应。研究结果表明:考虑动态水位淹盖边坡变化的模拟结果更能合理展现蓄水进程中的重力效应,与绝对重力观测值的相对误差为14%,相比以往静态蓄水模型模拟结果(低水位与高水位模型与实测相对误差分别为50%与71%)有了显著提升;同时,区域水文重力效应模拟结果显示在利用全球或区域水文模型计算重力变化时应考虑测点周边起伏地形的影响。本文提供的三峡库首区高精度蓄水负荷建模及其正演结果,将为区域重力长期监测的对比分析和水文重力校正提供重要支撑,其结果有助于进一步探索库区滑坡与地震等蓄水激发的动力学过程。

关键词: 三峡库首区, 水文负荷, Delaunay三角剖分, 时变重力, 起伏地形

Abstract:

The cutoff of the Three Gorges Dam has led to changes in the region's hydrology and even the Yangtze River basin. Most previous studies using river digital elevation and regional hydrological models focused on analyzing the gravity response of simplified water storage models and regional equivalent water heights, without considering the impact of river slopes and surrounding undulating terrain. This study constructed a water storage load model based on the river boundary of the head area of the Three Gorges Reservoir extracted by the Gaofen-1 (GF-1) satellite image. It used the Delaunay method to triangulate the complex water body surface and surrounding terrain. The regional hydrological gravity and gravity gradient effect were simulated using a high-precision polyhedron external gravity field algorithm. The research results indicate that considering the dynamic variation of water level and its impact on the slope provides a more reasonable simulation of the gravitational effects during the reservoir impoundment process. The relative error concerning absolute gravity measurements is 14%, which represents a significant improvement compared to the previous static reservoir models (with relative errors of 50% and 71% for low and high water levels, respectively). Furthermore, the regional hydrological gravity effect simulation suggests that when calculating gravity changes using global or regional hydrological models, the topography surrounding the observation points should be considered. The high-precision reservoir load modeling and forward simulation results for the Three Gorges Reservoir area presented in this paper will provide important support for long-term regional gravity monitoring, comparative analysis, and hydrological gravity correction. The findings also contribute to further exploration of the dynamic processes triggered by reservoir impoundments, such as landslides and seismic activities in the reservoir area.

Key words: the head region of Three Gorges Reservoir, hydrological load, Delaunay triangulation, time-varying gravity, undulating terrain

中图分类号: