| [1] |
贺添, 孟国杰, 吴伟伟, 等. 中国地震科学实验场BDS-3定位精度和地壳运动初步分析[J]. 测绘学报, 2024, 53(4): 653-665. DOI: .
doi: 10.11947/j.AGCS.2024.20230044
|
|
HE Tian, MENG Guojie, WU Weiwei, et al. Preliminary analysis to positioning precision and crustal movement of BDS-3 data recorded by the China seismic experiment site[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 653-665. DOI: .
doi: 10.11947/j.AGCS.2024.20230044
|
| [2] |
CHEN Kejie, WEI Guoguang, MILLINER C, et al. Super-shear ruptures steered by pre-stress heterogeneities during the 2023 Kahramanmaraş earthquake doublet[J]. Nature Communications, 2024, 15: 7004.
|
| [3] |
ZHU Hai, CHEN Kejie, CHAI Haishan, et al. Characterizing extreme drought and wetness in Guangdong, China using global navigation satellite system and precipitation data[J]. Satellite Navigation, 2024, 5(1): 1.
|
| [4] |
明锋, 杨元喜, 曾安敏, 等. 中国区域IGS站高程时间序列季节性信号及长期趋势分析[J]. 中国科学:地球科学, 2016, 46(6): 834-844, 1-3.
|
|
MING Feng, YANG Yuanxi, ZENG Anmin, et al. Seasonal signal and long-term trend analysis of elevation time series of IGS station in China area[J]. Scientia Sinica (Terrae), 2016, 46(6): 834-844, 1-3.
|
| [5] |
姜卫平, 王锴华, 李昭, 等. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2112-2123.
|
|
JIANG Weiping, WANG Kaihua, LI Zhao, et al. Prospect and theory of GNSS coordinate time series analysis[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2112-2123.
|
| [6] |
HEKI K, JIN Shuanggen. Geodetic study on earth surface loading with GNSS and GRACE[J]. Satellite Navigation, 2023, 4(1): 24.
|
| [7] |
LI Zhao, JIANG Weiping, VAN DAM T, et al. A review on modeling environmental loading effects and their contributions to nonlinear variations of global navigation satellite system coordinate time series[J]. Engineering, 2025, 47: 26-37.
|
| [8] |
VAN DAM T, WAHR J, MILLY P C D, et al. Crustal displacements due to continental water loading[J]. Geophysical Research Letters, 2001, 28(4): 651-654.
|
| [9] |
VAN DAM T, COLLILIEUX X, WUITE J, et al. Nontidal ocean loading: amplitudes and potential effects in GPS height time series[J]. Journal of Geodesy, 2012, 86(11): 1043-1057.
|
| [10] |
JIANG Weiping, LI Zhao, VAN DAM T, et al. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series[J]. Journal of Geodesy, 2013, 87(7): 687-703.
|
| [11] |
DONG D, FANG P, BOCK Y, et al. Anatomy of apparent seasonal variations from GPS-derived site position time series[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4): ETG9-1-ETG9-16.
|
| [12] |
HE Yuefan, NIE Guigen, WU Shuguang, et al. Comparative analysis of the correction effect of different environmental loading products on global GNSS coordinate time series[J]. Advances in Space Research, 2022, 70(11): 3594-3613.
|
| [13] |
武曙光. CMONOC测站时序分析及周年相位约束聚类算法的应用研究[J]. 测绘学报, 2023, 52(9): 1614. DOI: .
doi: 10.11947/j.AGCS.2023.20220238
|
|
WU Shuguang. Study on GPS coordinate time series analysis of CMONOC stations and application of the annual phase-augmented clustering algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1614. DOI: .
doi: 10.11947/j.AGCS.2023.20220238
|
| [14] |
FAN Wenlan, JIANG Weiping, LI Zhao, et al. Impacts of local Green's functions on modeling atmospheric loading effects for GNSS reference stations[J]. Earth and Space Science, 2024, 11(2): e2023EA003113.
|
| [15] |
XU Xueqing, DONG Danan, FANG Ming, et al. Contributions of thermoelastic deformation to seasonal variations in GPS station position[J]. GPS Solutions, 2017, 21(3): 1265-1274.
|
| [16] |
FU Yuning, ARGUS D F, FREYMUELLER J T, et al. Horizontal motion in elastic response to seasonal loading of rain water in the Amazon basin and monsoon water in Southeast Asia observed by GPS and inferred from GRACE[J]. Geophysical Research Letters, 2013, 40(23): 6048-6053.
|
| [17] |
王林松, 陈超, 邹蓉, 等. 利用GPS与GRACE监测陆地水负荷导致的季节性水平形变:以喜马拉雅山地区为例[J]. 地球物理学报, 2014, 57(6): 1792-1804.
|
|
WANG Linsong, CHEN Chao, ZOU Rong, et al. Using GPS and GRACE to detect seasonal horizontal deformation caused by loading of terrestrial water: a case study in the Himalayas[J]. Chinese Journal of Geophysics, 2014, 57(6): 1792-1804.
|
| [18] |
胡顺强, 王坦, 管雅慧, 等. 利用GPS和水文负载模型研究云南地区垂向季节性波动变化和构造变形[J]. 地球物理学报, 2021, 64(8): 2613-2630.
|
|
HU Shunqiang, WANG Tan, GUAN Yahui, et al. Analyzing the seasonal fluctuation and vertical deformation in Yunnan province based on GPS measurement and hydrological loading model[J]. Chinese Journal of Geophysics, 2021, 64(8): 2613-2630.
|
| [19] |
ZHAN Wei, LI Fei, HAO Weifeng, et al. Regional characteristics and influencing factors of seasonal vertical crustal motions in Yunnan, China[J]. Geophysical Journal International, 2017, 210(3): 1295-1304.
|
| [20] |
ZHU Hai, CHEN Kejie, HU Shunqiang, et al. Using the global navigation satellite system and precipitation data to establish the propagation characteristics of meteorological and hydrological drought in Yunnan, China[J]. Water Resources Research, 2023, 59(4): e2022WR033126.
|
| [21] |
HU Shunqiang, CHEN Kejie, ZHU Hai, et al. A comprehensive analysis of environmental loading effects on vertical GPS time series in Yunnan, southwest China[J]. Remote Sensing, 2022, 14(12): 2741.
|
| [22] |
FARRELL W E. Deformation of the Earth by surface loads[J]. Reviews of Geophysics, 1972, 10(3): 761-797.
|
| [23] |
MANGIAROTTI S, CAZENAVE A, SOUDARIN L, et al. Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B3): 4277-4291.
|
| [24] |
DILL R. Hydrological model LSDM for operational earth rotation and gravity field variations[R]. Potsdam: GFZ, 2008.
|
| [25] |
MARSLAND S J, HAAK H, JUNGCLAUS J H, et al. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates[J]. Ocean Modelling, 2003, 5(2): 91-127.
|
| [26] |
GELARO R, MCCARTY W, SUÁREZ M J, et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J]. Journal of Climate, 2017, 30(13): 5419-5454.
|
| [27] |
DOBSLAW H, THOMAS M. Simulation and observation of global ocean mass anomalies[J]. Journal of Geophysical Research: Oceans, 2007, 112(C5): 1-11.
|
| [28] |
MING Feng, YANG Yuanxi, ZENG Anmin, et al. Spatiotemporal filtering for regional GPS network in China using independent component analysis[J]. Journal of Geodesy, 2017, 91(4): 419-440.
|
| [29] |
LIU Bin, DAI Wujiao, LIU Ning. Extracting seasonal deformations of the Nepal Himalaya region from vertical GPS position time series using independent component analysis[J]. Advances in Space Research, 2017, 60(12): 2910-2917.
|
| [30] |
GU Y, YUAN L, FAN D, et al. Seasonal crustal vertical deformation induced by environmental mass loading in mainland China derived from GPS, GRACE and surface loading models[J]. Advances in Space Research, 2017, 59(1): 88-102.
|
| [31] |
闫昊明, 陈武, 朱耀仲, 等. 温度变化对我国GPS台站垂直位移的影响[J]. 地球物理学报, 2010, 53(4): 825-832.
|
|
YAN Haoming, CHEN Wu, ZHU Yaozhong, et al. Thermal effects on vertical displacement of GPS stations in China[J]. Chinese Journal of Geophysics, 2010, 53(4): 825-832.
|
| [32] |
TAN Weijie, DONG Danan, CHEN Junping. Application of independent component analysis to GPS position time series in Yunnan province, southwest of China[J]. Advances in Space Research, 2022, 69(11): 4111-4122.
|
| [33] |
HU Shunqiang, CHEN Kejie, ZHU Hai, et al. Potential contributors to CME and optimal noise model analysis in the Chinese region based on different HYDL models[J]. Remote Sensing, 2023, 15(4): 945.
|
| [34] |
BARNIE T, OPPENHEIMER C. Extracting high temperature event radiance from satellite images and correcting for saturation using independent component analysis[J]. Remote Sensing of Environment, 2015, 158: 56-68.
|
| [35] |
PAN Yuanjin, JIANG Weiping, DING Hao, et al. Intradecadal fluctuations and three-dimensional crustal kinematic deformation of the Tianshan and Pamir derived from multi-geodetic imaging[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(1): e2022JB025325.
|
| [36] |
YI Shuang, SNEEUW N. Filling the data gaps within GRACE missions using singular spectrum analysis[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(5): e2020JB021227.
|