| [1] |
BEVIS M, BUSINGER S, CHISWELL S, et al. GPS meteorology: mapping zenith wet delays onto precipitable water[J]. Journal of Applied Meteorology, 1994, 33(3): 379-386.
|
| [2] |
BOEHM J, WERI B, SCHUH H. Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B2): 403-408.
|
| [3] |
唐伟, 廖明生, 张丽, 等. 基于全球气象再分析资料的InSAR对流层延迟改正研究[J]. 地球物理学报, 2017, 60(2): 527-540.
|
|
TANG Wei, LIAO Mingsheng, ZHANG Li, et al. Study on InSAR tropospheric correction using global atmospheric reanalysis products[J]. Chinese Journal of Geophysics, 2017, 60(2): 527-540.
|
| [4] |
DROŻDEWSKI M, SOŚNICA K. Tropospheric and range biases in satellite laser ranging[J]. Journal of Geodesy, 2021, 95(9): 100.
|
| [5] |
周茂, 金涛勇, 姜卫平. 利用最优插值法改正宽刈幅高度计对流层湿延迟[J]. 武汉大学学报(信息科学版), 2023, 48(6): 911-918.
|
|
ZHOU Mao, JIN Taoyong, JIANG Weiping. Wet tropospheric correction of wide-swath altimeter by optimum interpolation method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 911-918.
|
| [6] |
BOEHM J, SALSTEIN D, ALIZADEH M. Atmospheric effects in space geodesy[M]. Berlin: Springer-Verlag, 2013: 73-136.
|
| [7] |
FAN Haopeng, SUN Zhongmiao, ZHANG Liping, et al. A two-step estimation method of troposphere delay with consideration of mapping function errors[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 76-84.
|
| [8] |
张小红, 胡家欢, 任晓东. PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较[J]. 测绘学报, 2020, 49(9): 1084-1100. DOI: .
doi: 10.11947/j.AGCS.2020.20200328
|
|
ZHANG Xiaohong, HU Jiahuan, REN Xiaodong. New progress of PPP/PPP-RTK and positioning performance comparison of BDS/GNSS PPP[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1084-1100. DOI: .
doi: 10.11947/j.AGCS.2020.20200328
|
| [9] |
姚宜斌, 张良, 张琦, 等. 面向大高差RTK的对流层延迟改正模型及实时差分服务构建[J]. 武汉大学学报(信息科学版), 2023, 48(7): 1019-1028.
|
|
YAO Yibin, ZHANG Liang, ZHANG Qi, et al. Tropospheric delay model and real-time differencial service for large height difference RTK[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1019-1028.
|
| [10] |
SCHÜLER T. The TropGrid2 standard tropospheric correction model[J]. GPS Solutions, 2014, 18(1): 123-131.
|
| [11] |
THAYER G D. A rapid and accurate ray tracing algorithm for a horizontally stratified atmosphere[J]. Radio Science, 1967, 2(2): 249-252.
|
| [12] |
LEANDRO R, SANTOS M, LANGLEY R. UNB neutral atmosphere models: development and performance[C]//Proceedingss of 2006 ION GNSS. Monterey: Institute of Navigation, 2006.
|
| [13] |
PENNA N, DODSON A, CHEN Wu. Assessment of EGNOS tropospheric correction model[J]. Journal of Navigation, 2001, 54(1): 37-55.
|
| [14] |
BÖHM J, MÖLLER G, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3): 433-441.
|
| [15] |
LANDSKRON D, BÖHM J. VMF3/GPT3: refined discrete and empirical troposphere mapping functions[J]. Journal of Geodesy, 2018, 92(4): 349-360.
|
| [16] |
李薇, 袁运斌, 欧吉坤, 等. 全球对流层天顶延迟模型IGGtrop的建立与分析[J]. 科学通报, 2012, 57(15): 1317-1325.
|
|
LI Wei, YUAN Yunbin, OU Jikun, et al. Establishment and analysis of global tropospheric zenith delay model IGGtrop[J]. Chinese Science Bulletin, 2012, 57(15): 1317-1325.
|
| [17] |
戴吾蛟, 陈招华, 梁铭. 高差对GPS大地高测量精度的影响[J]. 大地测量与地球动力学, 2009, 29(3): 80-83.
|
|
DAI Wujiao, CHEN Zhaohua, LIANG Ming. Effect of height difference on GPS vertical accuracy[J]. Journal of Geodesy and Geodynamics, 2009, 29(3): 80-83.
|
| [18] |
黄良珂, 陈华, 刘立龙, 等. 一种新的高精度全球对流层天顶延迟模型[J]. 地球物理学报, 2021, 64(3): 782-795.
|
|
HUANG Liangke, CHEN Hua, LIU Lilong, et al. A new high-precision global model for calculating zenith tropospheric delay[J]. Chinese Journal of Geophysics, 2021, 64(3): 782-795.
|
| [19] |
聂檄晨. 对流层天顶湿延迟模型及水汽反演应用研究[D]. 南京: 东南大学, 2020.
|
|
NIE Xichen. Study on tropospheric wet delay model and application of water vapor inversion[D]. Nanjing: Southeast University, 2020.
|
| [20] |
HOPFIELD H S. Tropospheric effect on electromagnetically measured range: prediction from surface weather data[J]. Radio Science, 1971, 6(3): 357-367.
|
| [21] |
SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bulletin Géodésique, 1973, 6(3): 357-367.
|
| [22] |
DAVIS J L, HERRING T A, SHAPIRO I I, et al. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length[J]. Radio Science, 1985, 20(6): 1593-1607.
|
| [23] |
XIA Pengfei, XIA Jingchao, YE Shirong, et al. A new method for estimating tropospheric zenith wet-component delay of GNSS signals from surface meteorology data[J]. Remote Sensing, 2020, 12(21): 3497.
|
| [24] |
YANG Fei, GUO Jiming, MENG Xiaolin, et al. Establishment and assessment of a zenith wet delay (ZWD) augmentation model[J]. GPS Solutions, 2021, 25: 148.
|
| [25] |
FAN Haopeng, LI Siran, SUN Zhongmiao, et al. Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model[J]. Geoscientific Model Development, 2023, 16(4): 1345-1358.
|
| [26] |
SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 802-810.
|
| [27] |
黄启桥, 麦雄发, 李玲, 等. 基于ConvLSTM的广西短临降水预报[J]. 气象研究与应用, 2021, 42(4): 44-49.
|
|
HUANG Qiqiao, MAI Xiongfa, LI Ling, et al. Forecast of short-term precipitation in Guangxi based on ConvLSTM[J]. Journal of Meteorological Research and Application, 2021, 42(4): 44-49.
|
| [28] |
LI Chen, FENG Yuan, SUN Tianying, et al. Long term Indian Ocean dipole (IOD) index prediction used deep learning by ConvLSTM[J]. Remote Sensing, 2022, 14(3): 523.
|
| [29] |
LUO Hanze, GONG Yingkui, CHEN Si, et al. Prediction of global ionospheric total electron content (TEC) based on SAM-ConvLSTM model[J]. Space Weather, 2023, 21(12): e2023SW003707.
|
| [30] |
罗子聪. 基于深度学习的气象要素时空预测研究[D]. 南京: 南京信息工程大学, 2023.
|
|
LUO Zicong. Research on temporal and spatial prediction of meteorological elements based on deep learning[D]. Nanjing: Nanjing University of Information Science & Technology, 2023.
|
| [31] |
XU Tianhe, LI Song, JIANG Nan. Zenith troposphere delay prediction based on BP neural network and least squares support vector machine[R]. [S.l.]: EGU General Assembly, 2020.
|
| [32] |
ZHENG Yuxin, LU Cuixian, WU Zhilu, et al. Machine learning-based model for real-time GNSS precipitable water vapor sensing[J]. Geophysical Research Letters, 2022, 49(3): e2021GL096408.
|
| [33] |
LI Song, XU Tianhe, XU Yan, et al. Forecasting GNSS zenith troposphere delay by improving GPT3 model with machine learning in Antarctica[J]. Atmosphere, 2022, 13(1): 78.
|
| [34] |
许超钤. 实时高精度对流层关键参量建模及其应用研究[D]. 武汉: 武汉大学, 2017.
|
|
XU Chaoqian. Modeling and application of real-time high-accuracy troposphere key parameters[D]. Wuhan: Wuhan University, 2017.
|
| [35] |
WANG Jungang, BALIDAKIS K, ZUS F, et al. Improving the vertical modeling of tropospheric delay[J]. Geophysical Research Letters, 2022, 49(5): e2021GL096732.
|
| [36] |
HOFMEISTER A. Determination of path delays in theatmosphere for geodetic VlBl by means of ray-tracing[D]. Vienna: Technische Universität Wien, 2016.
|
| [37] |
范昊鹏. 新一代大地测量VLBI关键技术及应用研究[D]. 郑州: 信息工程大学, 2018.
|
|
FAN Haopeng. Research on key technologies and applications of the new-generation geodetic VLBI[D]. Zhengzhou: Information Engineering University, 2018.
|