| [1] |
单建晨. 超(甚)高阶全球地形球谐系数模型的构建[D]. 郑州: 信息工程大学, 2022.
|
|
SHAN Jianchen. Construction of ultra-high-degree spherical harmonic model of the earth topography[D]. Zhengzhou: Information Engineering University, 2022.
|
| [2] |
单建晨, 李姗姗, 范雕, 等. 基于调和分析法的全球地形球谐系数模型构建[J]. 中国惯性技术学报, 2022, 30(1): 29-36.
|
|
SHAN Jianchen, LI Shanshan, FAN Diao, et al. Constructing spherical harmonic model of Earth topography based on harmonic analysis methods[J]. Journal of Chinese Inertial Technology, 2022, 30(1): 29-36.
|
| [3] |
单建晨, 李姗姗, 范雕, 等. 超高阶全球地形球谐系数模型的构建方法与实现[J]. 测绘学报, 2023, 52(5): 748-759. DOI: .
doi: 10.11947/j.AGCS.2023.20220003
|
|
SHAN Jianchen, LI Shanshan, FAN Diao, et al. Design and implementation of ultra-high-degree spherical harmonic model of earth topography[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 748-759. DOI: .
doi: 10.11947/j.AGCS.2023.20220003
|
| [4] |
YANG Meng. Investigation of the residual terrain modelling (RTM) technique for high-frequency gravity calculations[D]. Munich: Technical University of Munich, 2020.
|
| [5] |
HIRT C, REXER M, CLAESSENS S, et al. The relation between degree-2160 spectral models of Earth's gravitational and topographic potential: a guide on global correlation measures and their dependency on approximation effects[J]. Journal of Geodesy, 2017, 91(10): 1179-1205.
|
| [6] |
HIRT C, FEATHERSTONE W E, MARTI U. Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data[J]. Journal of Geodesy, 2010, 84(9): 557-567.
|
| [7] |
李军, 欧阳明达, 李琦. 利用EGM2008+DTM2006.0模型精化区域似大地水准面[J]. 大地测量与地球动力学, 2018, 38(3): 244-248.
|
|
LI Jun, OUYANG Mingda, LI Qi. Refinement of regional quasi-geoid using the EGM2008+DTM2006.0 model[J]. Journal of Geodesy and Geodynamics, 2018, 38(3): 244-248.
|
| [8] |
陈良. 剩余地形模型在高程异常计算中的适用性分析[D]. 成都: 西南交通大学, 2023.
|
|
CHEN Liang. Applicability analysis of residual terrain model in height anomaly calculation[D]. Chengdu: Southwest Jiaotong University, 2023.
|
| [9] |
张兴福, 刘成. 综合EGM2008模型和SRTM/DTM2006.0剩余地形模型的GPS高程转换方法[J]. 测绘学报, 2012, 41(1): 25-32.
|
|
ZHANG Xingfu, LIU Cheng. The approach of GPS height transformation based on EGM2008 and SRTM/DTM2006.0 residual terrain model[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1): 25-32.
|
| [10] |
HIRT C, BUCHA B, YANG Meng, et al. A numerical study of residual terrain modelling (RTM) techniques and the harmonic correction using ultra-high-degree spectral gravity modelling[J]. Journal of Geodesy, 2019, 93(9): 1469-1486.
|
| [11] |
PAVLIS N K, FACTOR J K, HOLMES S A. Terrain-related gravimetric quantities computed for the next EGM[C]//Proceedings of the 1st International Symposium of the International Gravity Field Service. Istanbul: [s.n.], 2007: 318-323.
|
| [12] |
HIRT C, REXER M. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models-Available as gridded data and degree-10 800 spherical harmonics[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 103-112.
|
| [13] |
HIRT C. RTM gravity forward-modeling using topography/bathymetry data to improve high-degree global geopotential models in the coastal zone[J]. Marine Geodesy, 2013, 36(2): 183-202.
|
| [14] |
YANG Meng, HIRT C, PAIL R, et al. TGF: a new MATLAB-based software for terrain-related gravity field calculations[J]. Remote Sensing, 2020, 12(7): 1062-1083.
|
| [15] |
REXER M, HIRT C. Ultra-high-degree surface spherical harmonic analysis using the Gauss-Legendre and the driscoll/Healy quadrature theorem and application to planetary topography models of Earth, Mars and Moon[J]. Surveys in Geophysics, 2015, 36(6): 803-830.
|
| [16] |
罗志才, 钟波, 宁津生, 等. 卫星重力梯度测量确定地球重力场的理论与方法[M]. 武汉: 武汉大学出版社, 2015.
|
|
LUO Zhicai, ZHONG Bo, NING Jinsheng, et al. Theory and method for determining the Earth's gravity field from satellite gravity gradiometry[M]. Wuhan: Wuhan University Press, 2015.
|
| [17] |
LEMOINE F, KENYON S C, FACTOR J, et al. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96[R]. Washington, D. C.: NASA Goddard Space Flight Center, 1998.
|
| [18] |
COLOMBO O L. Numerical methods for harmonic analysis on the sphere[R]. Columbus: Ohio State University, 1981.
|
| [19] |
邢志斌. GOCE卫星重力梯度数据恢复地球重力场理论与方法研究[D]. 郑州: 信息工程大学, 2019.
|
|
XING Zhibin. Research on theory and methodology of earth gravity field recovery based on GOCE gravity gradient data[D]. Zhengzhou: Information Engineering University, 2019.
|
| [20] |
李新星, 吴晓平, 李姗姗, 等. 块对角最小二乘方法在确定全球重力场模型中的应用[J]. 测绘学报, 2014, 43(8): 778-785.
|
|
LI Xinxing, WU Xiaoping, LI Shanshan, et al. The application of block-diagonal least-squares methods in geopotential model determination[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8): 778-785.
|
| [21] |
田家磊, 李新星, 吴晓平, 等. 超高阶重力场模型最小二乘快速实现[J]. 测绘学报, 2018, 47(11): 1437-1445. DOI: .
doi: 10.11947/j.AGCS.2018.20170659
|
|
TIAN Jialei, LI Xinxing, WU Xiaoping, et al. Fast realization of ultra-high-degree geopotential model by improved least-squares method[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11): 1437-1445. DOI: .
doi: 10.11947/j.AGCS.2018.20170659
|
| [22] |
梁伟. 超高阶地球重力场模型构建理论与方法的研究[D]. 武汉: 武汉大学, 2021.
|
|
LIANG Wei. Study of the theories and methods on the development of Earth's gravity field model with ultra-high degree and order[D]. Wuhan: Wuhan University, 2021.
|
| [23] |
李建成, 徐新禹, 赵永奇, 等. 由GOCE引力梯度张量不变量确定卫星重力模型的半解析法[J]. 武汉大学学报(信息科学版), 2016, 41(1): 21-26.
|
|
LI Jiancheng, XU Xinyu, ZHAO Yongqi, et al. Approach for determining satellite gravity model from GOCE gravitational gradient tensor invariant observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 21-26.
|
| [24] |
邢志斌, 李姗姗, 田苗, 等. 重力梯度向量化调和分析的FFT算法[J]. 测绘科学技术学报, 2021, 38(4): 355-360.
|
|
XING Zhibin, LI Shanshan, TIAN Miao, et al. The FFT algorithm for vectorization harmonic analysis method of gravity gradient[J]. Journal of Geomatics Science and Technology, 2021, 38(4): 355-360.
|
| [25] |
XING Zhibin, LI Shanshan, TIAN Miao, et al. Numerical experiments on column-wise recurrence formula to compute fully normalized associated Legendre functions of ultra-high degree and order[J]. Journal of Geodesy, 2019, 94(1): 2.
|
| [26] |
FUKUSHIMA T. Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers[J]. Journal of Geodesy, 2012, 86(4): 271-285.
|