测绘学报
• 学术论文 • 上一篇 下一篇
杨红磊1,彭军还2
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
,
Received:
Revised:
Online:
Published:
摘要: 模糊C均值聚类是一种经典的非监督聚类模型,成功地应用于遥感影像分类。但是该方法对初始值敏感,容易陷入局部最优解;同时聚类时仅考虑光谱信息,忽略了空间信息。本文提出了一种新的基于马尔科夫随机场的模糊C均值聚类方法,该方法把马尔科夫随机场和模糊C均值结合在一起。初始值依据第一主成分的密度函数确定,这样克服了对初始值的依赖性,又在聚类的时候考虑了空间信息。通过实例数据验证,所提出的方法分类精度优于传统的模糊C均值模型。
Abstract: Fuzzy C means clustering is a classic non-supervised clustering model, successfully applied to remote sensing classification. However, the method is the sensitivity to the initial values selected randomly, easy to fall into a local optimal solution; also uses only spectral information and ignores spatial information. This paper presents a new clustering algorithm integrates with Fuzzy C-means clustering and Markov random field. The density function of the first principal component sufficiently reflects the class differences, from which the initial label for FCM algorithm can be efficiently determined, and the sensitivity of the initial value selected at random can be avoided. Meanwhile, this algorithm takes into account the spatial location information between pixels. The experiment shows that the proposed method is better than the general FCM algorithm.
杨红磊,彭军还. 基于马尔科夫随机场与模糊C均值的遥感影像分类[J]. 测绘学报.
,. Remote Sensing Classification Based on Markov Random Field and Fuzzy C-means Clustering[J]. Acta Geodaetica et Cartographica Sinica.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://xb.chinasmp.com/CN/
http://xb.chinasmp.com/CN/Y2012/V41/I2/213