测绘学报

• 学术论文 • 上一篇    下一篇

基于Car(p,q)模型和数学形态学理论的LiDAR点云数据滤波

隋立春1,杨耘2   

  1. 1. 长安大学 地质工程与测绘学院
    2. 长安大学
  • 收稿日期:2009-10-12 修回日期:2011-10-18 出版日期:2012-04-25 发布日期:2012-04-25
  • 通讯作者: 隋立春

Filtering of Airborn LiDAR Point Cloud Data Based on Car(p,q)-Model and Mathematical Morphology

  • Received:2009-10-12 Revised:2011-10-18 Online:2012-04-25 Published:2012-04-25

摘要: 在分析现有的LiDAR点云数据后处理方法的基础上,本文提出了一种点云数据“分步”滤波方法。首先对LiDAR点云数据进行数学形态学“粗”滤波,得到“地面点假设”和“非地面点假设”。然后引入顾及因果关系的自回归模型(car)对两类点云数据假设进行模型化处理和假设检验,根据假设检验的结果判断地面点和非地面点,最终得到可靠的分类结果。与单纯的“最小二乘拟合预测法”或“数学形态学”方法相比,这种“分步”处理的思想用于LiDAR点云数据分类处理的结果更可靠。

Abstract: Based on the existing post-processing methods of LiDAR data, this paper proposes a new“separated step-by-step”filtering method of point cloud. First, a“rough”filtering method is applied to the LiDAR point cloud and the“ground points hypothesis”and“non-ground points hypothesis”are gained. Then, a causal auto-regressive model (car-model) is imported to do modeling of the ground surface and hypothesis test for the two classes of point clouds, and ground points and non-ground points are classified by the results of the hypothesis testing. Finally, a reliable classification results is gained. Compared to the“Least-Squares Prediction Method”and“mathematical morphology”, the results of LiDAR point cloud filtering by the“separated step-by-step”processing method is more reliable.