测绘学报

• •    

基于多标记点过程的Lidar点云数据建筑物和树冠提取

徐文学1,杨必胜2,魏征3,方莉娜1   

  1. 1. 武汉大学 测绘遥感信息工程国家重点实验室
    2. 武汉大学测绘遥感信息工程国家重点实验室
    3. 武汉大学
  • 收稿日期:2011-12-02 修回日期:2012-05-17 发布日期:2019-01-01
  • 通讯作者: 徐文学

Building and tree crown extraction from Lidar point cloud data based on multi-marked point process

  • Received:2011-12-02 Revised:2012-05-17 Published:2019-01-01

摘要: 机载激光扫描点云数据中自动提取建筑物和树冠目标是城市模型重建的重要基础工作。本文将机载激光扫描点云数据转换成点云特征影像,提出了基于多标记点过程的建筑物和树冠目标几何对象的自动提取方法。该方法首先根据目标的几何特征建立Gibbs自由能变模型,通过目标的一致性建立该模型的数据项,通过目标的拓扑性质等空间特性建立该模型的先验项,然后利用可逆跳转马尔科夫蒙特卡洛(RJMCMC)算法进行采样,并采用模拟退火算法进行优化求解,实现建筑物目标和树冠目标几何对象的多目标自动提取。试验结果表明该方法能够从机载激光扫描数据中有效的提取建筑物和树冠,具有较强的稳健型。

Abstract: Automatic extraction of building and tree crown in airborne LIDAR data is an essential work of city model reconstruction. In this paper, multi-marked point process based method is used to extract building and tree crown from point cloud feature image, which generated from airborne LIDAR data. At first, the Gibbs free energy change model is build according to the geometric feature of the object. This model contains both a data coherence term which fits the objects to the data and a prior term which incorporates the prior knowledge of the plantation geometric properties. Then the previously defined model will be sampled using a RJMCMC (Reverse Jump Markov Chain Monte Carlo) algorithm and optimized using a simulated annealing algorithm. The experimental results show that our method is capable of efficient extracting building and tree crown from airborne LIDAR data with great robustness.

中图分类号: