摘要: 提出一种基于向量场模型的多光谱图像多尺度边缘检测算法,并在算法中引入两种梯度方向量化邻域模型。首先,对多光谱图像进行二进小波变换,得到每个波段图像在不同尺度上的细节系数,然后根据向量场模型计算多光谱图像的梯度幅值和梯度方向,选择适宜的邻域模型对梯度方向进行量化,最后沿量化后的方向获取由细到粗的多层次边缘信息。对QuickBird多光谱图像上农田、厂房等地物进行多尺度边缘提取,定性分析了图像分辨率大小与地物尺寸关系在不同尺度边缘信息的表征;利用F测度,定量评价了检测结果的边缘准确度。与传统算子检测结果对比表明,利用向量场模型综合了所有波段的边缘信息,减少了多波段图像边缘信息的不一致性,引入的量化邻域模型能够有效地获取完整的多尺度边缘点。