测绘学报

• 学术论文 • 上一篇    下一篇

子午线弧长公式的简化及其泰勒级数解释

过家春   

  1. 安徽农业大学
  • 收稿日期:2012-12-10 修回日期:2013-01-27 出版日期:2014-02-20 发布日期:2013-12-19
  • 通讯作者: 过家春
  • 基金资助:

    第三届中国卫星导航学术年会青年优秀论文资助课题

A Simplification of The Meridian Formula and Its Taylor-series Interpretation

  • Received:2012-12-10 Revised:2013-01-27 Online:2014-02-20 Published:2013-12-19

摘要:

通过引入椭球的第三扁率及高斯超几何函数,推导得到子午线弧长解算公式的简化形式,并给出其泰勒级数解释,进而根据拉格朗日余项理论估计其误差。以WGS-84椭球参数为例进行验证分析,结果表明简化后的子午线弧长公式精度提高显著,误差估计理论正确。

关键词: 子午线弧长, 第三扁率, 高斯超几何函数, 泰勒级数, 误差估计

Abstract:

A more concise formula of the meridian arc length was obtained by introduced two new parameters: the third flattening and the Gauss hypergeometric function. From another perspective, the simplified formula is also can be explained by a Taylor series expansion. By this, we got error estimate of the formula in terms of the Lagrange form of the remainder. For numerical verification of the error estimate theory, application example was presented by using the WGS84 data. The results show that experimental data are consistent with the error estimate theory and the simplified formula is more precise than the standard one.

Key words: Meridian Arc Length, the Third Flattening, Gauss Hypergeometric Function, Taylor Series, Error Estimate

中图分类号: