[1] PENN B S. Using Simulated Annealing to Obtain Optimal Linear End-member Mixtures of Hyperspectral Data[J]. Computers & Geosciences, 2002, 28(7): 809-817. [2] RICHARDS J A. Remote Sensing Digital Image Analysis[M]. Berlin: Springer, 1999. [3] LI Hui, WANG Yunpeng, LI Yan, et al. Unmixing of Remote Sensing Images Based on Support Vector Machines and Pairwise Coupling[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4): 318-323. (李慧, 王云鹏, 李岩, 等. 基于SVM和PWC的遥感影像混合像元分解[J]. 测绘学报, 2009, 38(4): 318-323.) [4] JIN Jing, ZOU Zhengrong, TAO Chao. Compressed Texton Based High Resolution Remote Sensing Image Classification[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(5): 493-499. (金晶, 邹峥嵘, 陶超. 高分辨率遥感影像的压缩纹理元分类[J]. 测绘学报, 2014, 43(5): 493-499.) [5] GUO Xiujuan, YUAN Yue, FAN Xiaoou. Analysis and Application of Fuzzy Clustering Algorithm[J]. Journal of Jilin Institute of Architecture & Civil Engineering, 2009, 26(4): 79-81. (郭秀娟, 袁月, 范小鸥. 模糊聚类算法分析及应用[J]. 吉林建筑工程学院学报, 2009, 26(4): 79-81.) [6] BOVOLO F, BRUZZONE L, CARLIN L. A Novel Technique for Subpixel Image Classification Based on Support Vector Machine[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2983-2999. [7] ZHU X J. Semi-supervised Learning Literature Survey[OL/EB]. Wisconsin: University of Wisconsin, 2008.[2013-11-23]. http://pages.cs.wisc.edu/~jerryzhu/research/ssl/semireview.html. [8] TUIA D, CAMPS-VALLS G. Semisupervised Remote Sensing Image Classification with Cluster Kernels[J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2009, 6(2): 224-228. [9] LIU Xiaofang, HE Binbin, LI Xiaowen. Classification for Beijing-1 Micro-satellite's Multispectral Image Based on Semi-supervised Kernel FCM Algotithm[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(3): 301-306. (刘小芳, 何彬彬, 李小文. 基于半监督核模糊c-均值算法的北京一号小卫星多光谱图像分类[J]. 测绘学报, 2011, 40(3): 301-306.) [10] DOPIDO I, LI J, PLAZA A, et al. Semi-supervised Classification of Hyperspectral Data Using Spectral Unmixing Concepts[C]//Proceedings of the 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing. Naples: IEEE, 2012: 353-358. [11] BRUZZONE L, CHI M, MARCONCINI M. A Novel Transductive SVM for Semisupervised Classification of Remote-sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3363-3373. [12] DÓPIDO I, LI J, MARPU P R, et al. Semisupervised Self-learning for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4032-4044. [13] CAMPS-VALLS G, BANDOS MARSHEVA T, ZHOU D. Semi-supervised Graph-based Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3044-3054. [14] GU Y F, FENG K. L1-graph Semisupervised Learning for Hyperspectral Image Classification[C]//Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE, 2012: 1401-1404. [15] JOSHI A J, PORIKLI F, PAPANIKOLOPOULOS N. Multi-class Active Learning for Image Classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009: 2372-2379. [16] HOTELLING H. Analysis of A Complex of Statistical Variables into Principal Components[J]. Journal of Educational Psychology, 1933, 24(6): 417-441. [17] TUIA D, VOLPI M, COPA L, et al. A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 606-617. [18] CRAWFORD M M, TUIA D, YANG H L. Active Learning: Any Value for Classification of Remotely Sensed Data?[J]. Proceedings of the IEEE, 2013, 101(3): 593-608. [19] LONG Jun, YIN Jianping, ZHU En, et al. An Active Learning Algorithm by Selecting the Most Possibly Wrong-Predicted Instances[J]. Journal of Computer Research and Development, 2008, 45(3): 472-478. (龙军, 殷建平, 祝恩, 等. 选取最大可能预测错误样例的主动学习算法[J]. 计算机研究与发展, 2008, 45(3): 472-478.) [20] LAN Yuandong. Research on Theory, Algorithms and Application of Graph-based Semi-supervised Learning[D]. Guangzhou: South China University of Technology, 2012. (兰远东. 基于图的半监督学习理论、算法及应用研究[D]. 广州: 华南理工大学, 2012.) |