测绘学报 ›› 2017, Vol. 46 ›› Issue (2): 208-217.doi: 10.11947/j.AGCS.2017.20160282

• 摄影测量学与遥感 • 上一篇    下一篇

利用自由形状线特征的遥感影像分级匹配方法

陈小卫1,2, 张保明1, 郭海涛1, 赵传1,2, 徐俊峰1,2   

  1. 1. 信息工程大学地理空间信息学院, 河南 郑州 450052;
    2. 地理信息工程国家重点实验室, 陕西 西安 710054
  • 收稿日期:2016-06-12 修回日期:2016-12-30 出版日期:2017-02-20 发布日期:2017-03-07
  • 作者简介:陈小卫(1989-),男,博士生,研究方向为卫星影像无控定位、影像线特征匹配。E-mail:chenxw_2007@aliyun.com
  • 基金资助:
    国家自然科学基金(41601507);地理信息工程国家重点实验室开放基金(SKLGIE2015-M-3-3)

Hierarchical Remote Sensing Image Matching Method Based on Free-form Linear Features

CHEN Xiaowei1,2, ZHANG Baoming1, GUO Haitao1, ZHAO Chuan1,2, XU Junfeng1,2   

  1. 1. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450052, China;
    2. State Key Laboratory of Geo-information Engineering, Xi'an 710054, China
  • Received:2016-06-12 Revised:2016-12-30 Online:2017-02-20 Published:2017-03-07
  • Supported by:
    The National Natural Science Foundation of China (No. 41601507),The Open Research Foundation of State Key Laboratory of Geo-information Engineering (No. SKLGIE2015-M-3-3)

摘要: 为较好地解决自由形状线特征匹配研究中线特征丰富信息的充分利用与有效描述这对矛盾,提出一种利用分级匹配策略的遥感影像匹配方法。为保证方法具有较高的匹配精度,从影像中检测亚像素边缘并进行有效的跟踪以得到连续性较好的自由形状线特征;再从中提取闭合线特征、线特征交点和角点等较稳定的特征作为共轭实体进行粗匹配,在确定各类特征的待选同名特征后,根据面积、角度等几何信息以及模型参数的分布特点逐步剔除误匹配,进而利用同名特征确定精匹配的初始参数;精匹配时对线特征中的亚像素边缘点加以利用,采用多层次二维迭代最邻近点(ICP)法依次利用由低到高采样率的边缘点进行匹配。试验结果表明,粗匹配选取的特征性能稳定,具有较高的匹配正确率和精度,能为精匹配提供较准确的初始参数,精匹配能达到与最小二乘影像匹配相当的亚像素级匹配精度,并且对具有较小仿射变形的影像也能实现稳定、准确的匹配。

关键词: 自由形状线特征, 影像匹配, 分级匹配策略, 闭合线特征, 线特征角点, 线特征交点

Abstract: A remote sensing image matching method using the hierarchical matching strategy is proposed, with the purpose of resolving the conflict between the full use and effective description of the rich information of free-form linear feature (FFLF) in the study of FFLF matching. To ensure high matching precision, continuous FFLFs are extracted based on sub-pixel edge detection and tracing method. In the coarse matching process, closed linear features (CLF), linear feature intersection (LFI) and corner (LFC) were selected as conjugated entities. After determining candidate features, the false matching was gradually eliminated based on area, angle and other geometry information as well as the distribution characteristics of the model parameters determined by feature combinations, finally the initial value of accurate matching was determined by the conjugate features. In the accurate matching process, based on multi-level two-dimensional iterative closest point (ICP) method, sub-pixel edge points with the sampling rate from low to high were orderly used for matching. Experimental results show that the features selected for coarse matching have stable performance. Coarse matching is of high accuracy and precision and can provide high precision initial matching parameters for accurate matching. Accurate matching can reach sub-pixel level precision equal to the least square matching (LSM) and with good adaptability to small image affine transformation.

Key words: free-form linear feature (FFLF), image matching, hierarchical matching strategy, closed linear feature (CLF), linear feature corner (LFC), linear feature intersection (LFI)

中图分类号: