[1] WONG C, YANG E, YAN X, et al. Adaptive and intelligent navigation of autonomous planetary rovers—a survey[C]//Proceedings of 2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). Pasadena, CA, USA: IEEE, 2017: 237-244. [2] LI Rongxing, DI Kaichang, MATTHIES L H, et al. Rover localization and landing-site mapping technology for the 2003 Mars exploration rover mission[J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(1): 77-90. [3] LI R, ARCHINAL B A, ARVIDSON R E, et al. Spirit rover localization and topographic mapping at the landing site of Gusev crater, Mars[J]. Journal of Geophysical Research: Planets, 2006, 111(E2). [4] GREEN D N, SASIADEK J Z. Path tracking, obstacle avoidance and dead reckoning by an autonomous planetary rover[J]. International Journal of Heavy Vehicle Systems, 1998, 5(1): 1-24. [5] HELMICK D M, ROUMELIOTIS S I, CHENG Yang, et al. Slip-compensated path following for planetary exploration rovers[J]. Advanced Robotics,2006,20(11): 1257-1280. [6] KAICHANG D I. Progress and applications of visual SLAM[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 38-49. [7] LI Rongxing, MA Fei, XU Fengliang, et al. Localization of Mars rovers using descent and surface-based image data[J]. Journal of Geophysical Research: Planets, 2002, 107(E11): FIDO 4-1-FIDO 4-8. [8] 万文辉. 基于立体视觉的深空探测车自主定位理论方法研究[D]. 北京:中国科学院大学,2012. WAN Wenhui. Theory and methods of stereo vision based autonomous rover localization in deep space exploration[D].Beijing: University of Chinese Academy of Sciences, 2012. [9] 邸凯昌.勇气号和机遇号火星车定位方法评述[J].航天器工程,2009,18(5):1-5. DI Kaichang. A review of spirit and opportunity rover localization methods [J]. Spacecraft Engineering, 2009,18(5):1-5. [10] ZHAN Y, ZHENG Y, LI C, et al. High-accuracy absolute positioning for the stationary planetary rover by integrating the star sensor and inclinometer[J]. Journal of Field Robotics, 2020, 37(6): 1063-1076. [11] DI K, LIU Z, YUE Z. Mars rover localization based on feature matching between ground and orbital imagery[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(8): 781-791. [12] 刘召芹, 万文辉, 彭嫚, 等. 遥感制图与导航定位技术在嫦娥三号遥操作中的应用[J]. 遥感学报, 2014, 18(5): 971-980. LIU Zhaoqin, WAN Wenhui, PENG Man, et al. Remote sensing mapping and localization techniques for teleoperation of Chang'e-3 rover[J]. Journal of Remote Sensing, 2014, 18(5): 971-980. [13] 徐辛超, 徐爱功, 刘少创, 等. 降落影像和导航影像的巡视探测器定位方法[J]. 导航定位学报, 2017, 5(2): 32-37. XU Xinchao, XU Aigong, LIU Shaochuang, et al. A positioning method of rover based on descent image and navigation image[J]. Journal of Navigation and Positioning, 2017, 5(2): 32-37. [14] BALARAM B, CANHAM T, DUNCAN C, et al. Mars helicopter technology demonstrator[C]//Proceedings of 2018 AIAA Atmospheric Flight Mechanics Conference. Kissimmee, FL, USA: AIAA, 2018. [15] BALARAM J, AUNG M, GOLOMBEK M P. The ingenuity helicopter on the perseverance rover[J]. Space Science Reviews, 2021, 217(4): 56. [16] SASAKI T, OTSU K, THAKKER R, et al. Where to map? iterative rover-copter path planning for Mars exploration[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 2123-2130. [17] EBADI K, AGHA-MOHAMMADI A A. Rover localization in mars helicopter aerial maps: experimental results in a Mars-analogue environment[C]//Proceedings of 2018 International Symposium on Experimental Robotics. Buenos Aires, Argentina: Springer International Publishing, 2020: 72-84. [18] SCHÖNBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas, NV, USA: IEEE, 2016: 4104-4113. [19] 薛武, 张永生, 赵玲, 等. 增量式SFM与POS辅助光束法平差精度比较[J]. 测绘学报, 2017, 46(2): 198-207. DOI: 10.11947/j.AGCS.2017.20160274. XUE Wu, ZHANG Yongsheng, ZHAO Ling, et al. Compareison of the accuracy of incremental SFM with POS-aided bundle adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 198-207. DOI: 10.11947/j.AGCS.2017.20160274. [20] LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60: 91-110. [21] YU G, MOREL J M. ASIFT: an algorithm for fully affine invariant comparison[J]. Image Processing On Line, 2011, 1: 11-38. [22] LIN W Y, WANG F, CHENG M M, et al. CODE: coherence based decision boundaries for feature correspondence[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(1): 34-47. [23] ZHANG Yiping, GONG Zhihui, WANG Bo. Research of pyramid space resection based on large angle of inclination[J]. Engineering of Surveying and Mapping, 2012(2): 21-2. [24] 冯文灏. 近景摄影测量[M].武汉:武汉大学出版社, 2002. FENG Wenhao. Close-range photogrammetry[M]. Wuhan: Wuhan University Press, 2002. |