测绘学报 ›› 2022, Vol. 51 ›› Issue (4): 488-500.doi: 10.11947/j.AGCS.2022.20220117
童小华1,2, 刘世杰1,2, 谢欢1,2, 许雄1,2, 叶真1,2, 冯永玖1,2, 王超1,2, 柳思聪1,2, 金雁敏1,2, 陈鹏1,2, 洪中华2, 栾奎峰2
收稿日期:
2021-09-16
修回日期:
2022-03-11
发布日期:
2022-04-24
作者简介:
童小华(1971-),男,博士,教授,从事航天测绘遥感与深空探测方面的研究。.E-mail:xhtong@tongji.edu.cn
基金资助:
TONG Xiaohua1,2, LIU Shijie1,2, XIE Huan1,2, XU Xiong1,2, YE Zhen1,2, FENG Yongjiu1,2, WANG Chao1,2, LIU Sicong1,2, JIN Yanmin1,2, CHEN Peng1,2, HONG Zhonghua2, LUAN Kuifeng2
Received:
2021-09-16
Revised:
2022-03-11
Published:
2022-04-24
Supported by:
摘要: 随着人类空间探测技术的不断发展,月球与深空探测已成为测绘遥感科学与技术的前沿和新战场。在多类型深空探测任务的驱动下,测绘遥感技术也得到了新的发展。本文结合国内外深空探测的各类任务,对地外天体环绕遥感测图、着陆导航遥感避障、巡视环境感知与视觉导航定位方面的研究现状和成果进行了系统总结;结合未来月球与深空探测任务需求,对深空遥感测绘技术的发展,包括地外天体海量全球遥感数据智能处理、全球控制网精化、月球南极精细三维形貌测绘、多传感器融合的着陆导航避障和巡视环境感知与定位等进行了探讨。
中图分类号:
童小华, 刘世杰, 谢欢, 许雄, 叶真, 冯永玖, 王超, 柳思聪, 金雁敏, 陈鹏, 洪中华, 栾奎峰. 从地球测绘到地外天体测绘[J]. 测绘学报, 2022, 51(4): 488-500.
TONG Xiaohua, LIU Shijie, XIE Huan, XU Xiong, YE Zhen, FENG Yongjiu, WANG Chao, LIU Sicong, JIN Yanmin, CHEN Peng, HONG Zhonghua, LUAN Kuifeng. From Earth mapping to extraterrestrial planet mapping[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 488-500.
[1] 张荣桥.中国首次火星探测工程[M]. 北京:中国宇航出版社, 2021. ZHANG Rongqiao. China's first Mars exploration project [M]. Beijing: China Aerospace Press, 2021. [2] GUO H D, FU W X, LI X W, et al. Research on global change scientific satellites[J]. Science China Earth Sciences, 2014, 57(2): 204-215. DOI: 10.1007/s11430-013-4748-5. [3] GU X F, TONG X D. Overview of China earth observation satellite programs [space agencies][J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3): 113-129. DOI: 10.1109/MGRS.2015.2467172. [4] 李德仁, 洪勇, 王密, 等.测绘遥感能为智能驾驶做什么?[J]. 测绘学报, 2021, 50(11): 1421-1431. DOI: 10.11947/j.AGCS 2021.202110280. LI Deren, HONG Yong, WANG Mi, et al. What can surveying and remote sensing do for intelligent driving?[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1421-1431. DOI: 10.11947/j.AGCS 2021.202110280. [5] 徐冠华, 柳钦火, 陈良富, 等.遥感与中国可持续发展:机遇和挑战[J].遥感学报, 2016, 20(5): 679-688. DOI: 10.11834/jrs.20166308. XU Guanhua, LIU Qinhuo, CHEN Liangfu, et al. Remote sensing for China's sustainable development: opportunities and challenges[J]. Journal of Remote Sensing, 2016, 20(5): 679-688. DOI: 10.11834/ jrs. 20166308. [6] 吴伟仁, 刘继忠, 唐玉华, 等.中国探月工程[J]. 深空探测学报, 2019, 6(5): 405-416. DOI: 10.15982/j.issn.2095-7777.2019.05.001. WU Weiren, LIU Jizhong, TANG Yuhua, et al. China lunar exploration program[J]. Journal of Deep Space Exploration, 2019, 6(5): 405-416. DOI: 10.15982/j.issn.2095-7777.2019.05.001. [7] 孙泽洲, 饶炜, 贾阳, 等.“天问一号”火星探测器关键任务系统设计[J]. 空间控制技术与应用, 2021,47(5): 9-16. DOI: 10.3969/j.issn.1674-1579.2021.05.002. SUN Zezhou, RAO Wei, JIA Yang, et al. Key mission system design of Tianwen-1 Mars probe[J]. Aerospace Control and Application, 2021,47(5): 9-16. DOI: 10.3969/j.issn.1674-1579.2021.05.002. [8] ZHANG X J, HUANG J C, WANG T, et al. ZhengHe-A mission to a Near-Earth asteroid and a main belt comet [C]//Proceedings of 2019 Lunar and Planetary Science Conference. Woodlands, TX, USA: LPSC, 2019,50: 1045. [9] 裴照宇, 刘继忠, 王倩, 等.月球探测进展与国际月球科研站[J].科学通报,2020, 65(24): 2577-2586. DOI: 10.1360/TB-2020-0582. PEI Zhaoyu, LIU Jizhong, WANG Qian, et al. Overview of lunar exploration and international lunar research station[J]. Chinese Science Bulletin, 2020,65(24): 2577-2586. DOI: 10.1360/TB-2020-0582. [10] 邸凯昌, 刘召芹, 万文辉, 等.月球和火星遥感制图与探测车导航定位[M].北京:科学出版社, 2015. DI Kaichang, LIU Zhaoqin, WAN Wenhui, et al. Lunar and Mars remote sensing mapping and rover localization[M]. Beijing: Science Press, 2015. [11] 刘继忠, 胡朝斌, 庞涪川, 等. 深空探测发展战略研究[J]. 中国科学:技术科学, 2020, 50(9): 1126-1139. LIU Jizhong, HU Chaobin, PANG Fuchuna, et al. Strategy of deep space exploration (in Chinese) [J]. Science China: Technological Sciences, 2020, 50(9): 1126-1139. [12] NOZETTE S, RUSTAN P, PLEASANCE L P, et al. The clementine mission to the moon: scientific overview[J]. Science, 1994, 266(5192): 1835-1839. DOI: 10.1126/science.266.5192.1835. [13] ROBINSON M S, BRYLOW S M, TSCHIMMEl M, et al. Lunar reconnaissance orbiter camera (LROC) instrument overview[J]. Space Science Reviews,2010, 150(1-4): 81-124. DOI: 10.1007/s11214-010-9634-2. [14] KATO M, SASAKI S, TANAKA K, et al. The Japanese lunar mission SELENE: science goals and present status[J]. Advances in Space Research, 2008, 42(2): 294-300. DOI: 10.1016/j.asr.2007.03.049. [15] GOSWAMI N J, ANNADURAI M. Chandrayaan-1: India's first planetary science mission to the moon[J]. Current Science, 2009, 96(4):486-491. [16] SINHA R K, VIJAYANA S, BHATT M, et al. Geological characterization of Chandrayaan-2 landing site in the southern high latitudes of the Moon [J]. ICARUS, 2020, 337(6): 113449. DOI: 10.1016/j.icarus.2019.113449. [17] 欧阳自远.嫦娥一号卫星的初步科学成果与嫦娥二号卫星的使命[J]. 航天器工程, 2010, 19(5): 1-6. DOI: 10.3969/j.issn.1673-8748.2010.05.001. OUYANG Ziyuan. Science results of Chang'e-1 lunar orbiter and mission goals of Chang'e-2[J]. Spacecraft Engineering, 2010, 19(5): 1-6. DOI: 10.3969/j.issn.1673-8748.2010.05.001. [18] 邱家稳, 王强, 马继楠.深空探测技术[J]. 红外与激光工程, 2020, 49(5): 20201001. DOI: 10.3788/IRLA20201001. QIU Jiawen, WANG Qiang, MA Jinan, et al. Deep space exploration technology [J]. Infrared and Laser Engineering, 2020, 49(5): 20201001. DOI: 10.3788/IRLA20201001. [19] HARUYAMA J, HARA S, HIOKI K, et al. Lunar global digital terrain model dataset produced from SELENE (Kaguya) terrain camera stereo observations[C]//Proceedings of the 43rd Lunar and Planetary Science Conference. Woodlands, TX, USA: LPSC, 2012: 1200. [20] BARKER M K, MAZARICO E, NEUMANN G A, et al. A new lunar digital elevation model from the lunar orbiter laser altimeter and SELENE terrain camera[J]. ICARUS, 2016, 273: 346-355. DOI: 10.1016/j.icarus.2015. 07.039. [21] JHA K, NEUMANN G A, MAZARICO E, et al. Lunar orbiter laser altimeter (LOLA) data products and contributions[C]//Proceedings of the 4th Planetary Data Workshop. Flagstaff, AZ, USA: PDW, 2019: 7063. [22] 李春来, 刘建军, 任鑫, 等.基于嫦娥二号立体影像的全月高精度地形重建[J].武汉大学学报(信息科学版),2018, 43(4): 485-495. DOI: 10.13203/j.whugis20170400. LI Chunlai, LIU Jianjun, REN Xin, et al. Lunar global high-precision terrain reconstruction based on Chang'e-2 stereo images[J]. Geomatics and Information Science of Wuhan University, 2018,43(4): 485-495. DOI: 10.13203/j.whugis20170400. [23] DLR. Shackleton crater rim potential landing site for ESA lunar lander DTM [EB/OL]. [2021-08-09]. http://wms.lroc.asu.edu/lroc/view_rdr/NAC_DTM_ESALL_SR12. [24] DLR. Connecting ridge potential landing site for ESA lunar lander DTM [EB/OL]. [2021-08-23]. http://wms.lroc.asu.edu/lroc/view_rdr/NAC_DTM_ESALL_CR1. [25] 陈昊, 刘世杰, 童小华, 等.嫦娥四号着陆点区域高分辨率数字高程模型构建[J].上海航天,2019, 36(3): 36-40. DOI: 10.19328/j.cnki.1006-1630.2019.03.005. CHEN Hao, LIU Shijie, Tong Xiaohua, et al. High-resoIution digital elevation model generation for Chang'e-4 landing site area[J]. Aerospace Shanghai, 2019,36(3): 36-40. DOI: 10.19328/j.cnki.1006-1630.2019.03.005. [26] DI K C, LIU Z, WAN W, et al. Geospatial technologies for Chang'e-3 and Chang'e-4 lunar rover missions [J]. Geo-spatial Information Science, 2020, 23(1): 87-97. DOI: 10.1080/10095020.2020.1718002. [27] WU B, LI F, HU H, et al. Topographic and geomorphological mapping and analysis of the Chang'e-4 landing site on the far side of the Moon[J]. Photogrammetric Engineering & Remote Sensing, 2020, 86(4): 247-258. DOI: 10.14358/PERS.86.4.247. [28] 童小华, 刘世杰, 叶真, 等. 基于自主研制1.5米分辨率三维地形和光照模型的月球南极沙克尔顿着陆选址分析[C]//深空探索科学技术与应用中国工程科技论坛. 深圳:[s.n.], 2021:18-19. TONG Xiaohua, LIU Shijie, YE Zhen, et al. Lunar south pole Shackleton landing selection analysis based on self-developed 1.5 m resolution three-dimensional terrain and illumination model [C]//Proceedings of 2021 Deep Space Exploration Science and Technology and Application China Engineering Science and Technology Forum. Shenzhen:[s.n.], 2021: 18-19. [29] SOFFEN G A. The viking project[J]. Journal of Geophysical Research, 1977, 82(28): 0148-0227. DOI: 10.1029/GL014i004p00379. [30] MALIN M C, EDGETT K S, CANTOR B A, et al. An overview of the 1985—2006 Mars orbiter camera science investigation[J]. Mars the International Journal of Mars Science & Exploration, 2010,4: 1-60. DOI: 10.1555/mars.2010.0001. [31] ZUREK R W, SMREKAR S E. An overview of the Mars reconnaissance orbiter (MRO) science mission[J]. Journal of Geophysical Research, 2007,112. DOI: 10.1029/2006JE002701. [32] CHICARRO A, MARTIN P, TRAUTNER R. The Mars express mission: an overview[J]. In Mars Express: A European mission to the Red Planet, 2004: 3-13. [33] 张玉花,王献忠,褚英志,等.我国首次自主火星探测任务中环绕器的研制与实践[J]. 上海航天, 2020,37(5): 1-9. DOI: 10.19328/j.cnki.1006-1630.2020.05.001. ZHANG Yuhua, WANG Xianzhong, CHU Yingzhi, et al. Development and practice of the orbiter in China's first Mars exploration mission[J]. Aerospace Shanghai, 2020,37(5): 1-9. DOI: 10.19328/j.cnki.1006-1630.2020.05.001. [34] ZOU Y, ZHU Y, BAI Y, et al. Scientific objectives and payloads of Tianwen-1, China's first Mars exploration mission[J]. Advances in Space Research, 2020, 67(2): 812-823. DOI: 10.1016/j.asr.2020.11.005. [35] NEUMANN G A, LEMOINE F G, SMITH D E, et al. The Mars orbiter laser altimeter archive: final precision experiment data record release and status of radiometry[C]//Proceedings of 2003 Lunar & Planetary Science Conference. Lunar and Planetary Science Conference. League City, TX, USA: LPSC, 2003. [36] FERGASON R L, HARE T M, LAURA J. HRSC and MOLA blended digital elevation model at 200m v2 [EB/OL]. [2021-10-11]. http://bit.ly/HRSC_MOLA_Blend_v0. [37] DIANA P A R, SIDIROPOULOS P, MULLER J P, et al. A new south polar digital terrain model of Mars from the high resolution stereo camera (HRSC) onboard the ESA Mars express[J]. Planetary and Space Science, 2019,174: 43-55. DOI: 10.1016/j.pss.2019.02.010. [38] KIRK R L, HOWINGTON-KRAUS E, ROSIEK M R, et al. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: meter-scale slopes of candidate Phoenix landing sites[J]. Journal of Geophysical Research, 2008,113: E00A24. DOI: 10.1029/2007JE003000. [39] RUESCH O, HESS M, WOHLFARTH K, et al. Synthetic topography from the decameter to the centimeter scale on Mars for scientific and rover operations of the ESA-Roscosmos ExoMars mission[J]. Planetary and Space Science, 2021, 205(10): 105301. DOI: 10.1016/j.pss.2021.105301. [40] LIU J, LI C, ZHANG R, et al. Geomorphic contexts and science focus of the Zhurong landing site on Mars[J]. Nature Astronomy, 2022,6: 65-71. DOI: 10.1038/s41550-021-01519-5. [41] 柳思聪, 童小华, 刘世杰, 等. 火星天问一号着陆区域形貌建模与分析[C]//深空探索科学技术与应用中国工程科技论坛. 深圳: [s.n.], 2021: 18-19. LIU Sicong, TONG Xiaohua, LIU Shijie, et al. Topography modeling and analysis of Tianwen-1 landing area on Mars [C] //Proceedings of 2021 Deep Space Exploration Science and Technology and Application China Engineering Science and Technology Forum. Shenzhen:[s.n.], 2021:18-19. [42] FUJIWARA A, KAWAGUCHI J, YEOMANS D K, et al. The rubble-pile asteroid Itokawa as observed by Hayabusa[J]. Science, 2006, 312(5778): 1330-1334. DOI: 10.1126/science.1125841. [43] WATANABE S, HIRABAYASHI M, HIRATA N, et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 ryugu—a spinning top-shaped rubble pile[J]. Science, 2019, 364(6437): 268-272. DOI: 10.1126/science.aav8032. [44] BARNOUIN O S, DALY M G, PALMER E E, et al. Shape of (101955) bennu indicative of a rubble pile with internal stiffness[J]. Nature Geoscience, 2019, 12(4): 247-252. DOI: 10.1038/s41561-019-0330-x. [45] ARCHINAL B A, ROSIEK M R, KIRK R L, et al. The unified lunar control network 2005[R]. Flagstaff, AZ, USA: U.S. Geological Survey Open-File Report 2006-1367, 2006. [46] 刘建军, 任鑫, 王奋飞, 等.月球光学遥感与制图研究进展[J].矿物岩石地球化学通报, 2015, 34(3):461-470. DOI: 10.3969/j.issn.1007-2802.2015.03.002. LIU Jianjun, REN Xin, WANG Fenfei, et al. Progress in the lunar optical remote sensing and mapping research[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(3):461-470. DOI: 10.3969/j.issn.1007-2802.2015.03.002. [47] ARCHINAL B A, LEE E M, KIRK R L, et al. A new Mars digital image model (MDIM 2.1) control network[J]. International Archives of Photogrammetry and Remote Sensing, 2004, 35(B4). [48] 徐青, 刑帅, 周杨, 等.深空行星形貌测绘的理论技术与方法[M].科学出版社, 2016. XU Qing, XING Shuai, ZHOU Yang, et al. Theory, technology and method of deep space planetary topography mapping [M]. Beijing: Science Press, 2016. [49] 邸凯昌, 刘斌, 辛鑫, 等.月球轨道器影像摄影测量制图进展及应用[J].测绘学报, 2019, 48 (12): 1562-1574. DOI: 10.11947/j.AGCS.2019.20190462. DI Kaichang, LIU Bin, XIN Xin, et al. Advances and applications of lunar photogrammetric mapping using orbital images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48 (12): 1562-1574. DOI: 10.11947/j.AGCS.2019.20190462. [50] KIRK R L, HOWINGTON-KRAUS E, REDDING B, et al. High-resolution topomapping of candidate MER landing sites with Mars orbiter camera narrow-angle images[J]. Journal of Geophysical Research Planets, 2003, 108(E12). DOI: 10.1029/2003JE002131. [51] GWINNER K, SCHOLTEN F, PREUSKER F, et al. Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance[J]. Earth and Planetary Science Letters, 2009, 294(3-4):506-519. DOI: 10.1016/j.epsl.2009.11.007. [52] TONG X H, YE Z, XU Y S, et al. Framework of jitter detection and compensation for high resolution satellites[J]. Remote Sensing, 2014, 6(5): 3944-3964. DOI: 10.3390/rs6053944. [53] TONG X H, LI L Y, LIU S J, et al. Detection and estimation of ZY-3 three line array image distortions caused by attitude oscillation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,101:291-309. DOI: 10.1016/j.isprsjprs.2015.01.003. [54] TONG X H, XU Y S,YE Z, et al. Attitude oscillation detection of the ZY-3 satellite by using multispectral parallax images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3522-3534. DOI: 10.1109/TGRS.2014.2379435. [55] TONG X H, YE Z, LI L Y, et al. Detection and estimation of along-track attitude jitter from Ziyuan-3 three-line-array images based on back-projection residuals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4272-4284. DOI: 10.1109/TGRS.2017.2690382. [56] LIU S J, TONG X H, WANG F X, et al. Attitude Jitter detection based on remotely sensed images and dense ground controls: a case study for Chinese ZY-3 satellite[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12): 5760-5766. DOI: 10.1109/JSTARS.2016. 2550482. [57] LIU S J, TONG X H, LI L Y, et al. Geometric modeling of attitude jitter for three-line-array imaging satellites[J]. Optics Express, 2021, 29(13): 20952-20969. [58] 童小华, 叶真, 刘世杰.高分辨率卫星颤振探测补偿的关键技术方法与应用[J].测绘学报, 2017, 46(10): 1500-1508. DOI: 10.11947/j.AGCS.2017.20170384. TONG Xiaohua, YE Zhen, LIU Shijie. Essential technology and application of jitter detection and compensation for high resolution satellites[J].Acta Geodaeticaet Cartographica Sinica, 2017, 46 (10): 1500-1508. DOI: 10.11947/j.AGCS.2017.20170384. [59] 吴伟仁, 于登云, 王赤, 等.月球极区探测的主要科学与技术问题研究[J].深空探测学报, 2020,7(3): 223-231. DOI: 10.15982/j.issn.2095-7777.2020.20200113001. WU Weiren, YU Dengyun, WANG Chi, et al. Research on the main scientific and technological issues on lunar polar exploration[J]. Journal of Deep Space Exploration, 2020,7(3): 223-231. DOI: 10.15982/j.issn.2095-7777.2020.20200113001. [60] 张熇, 杜宇, 李飞, 等.月球南极探测着陆工程选址建议[J].深空探测学报(中英文),2020,7(3): 232-240. DOI: 10.15982/j.issn.2095-7777.2020.20191003002. ZHANG He, DU Yu, LI Fei, et al. Proposals for sites selection of soft landing on lunar south polar region[J]. Journal of Deep Space Exploration, 2020, 7(3): 232-240. DOI: 10.15982/j.issn.2095-7777.2020.20191003002. [61] BARKER M K, MAZARICO E, NEUMANN G A, et al. Improved LOLA elevation maps for south pole landing sites: error estimates and their impact on illumination conditions[J]. Planetary & Space Science, 2021,203: 105119. DOI: 10.1016/j.pss.2020.105119. [62] 于正湜, 崔平远.行星着陆自主导航与制导控制研究现状与趋势[J].深空探测学报, 2016, 3(4): 345-355. DOI: 10.15982/j.issn.2095-7777.2016.04.006. YU Zhengti, CUI Pingyuan. Research status and developing trend of the autonomous navigation, guidance, and control for planetary landing[J]. Journal of Deep Space Exploration, 2016, 3(4): 345-355. DOI: 10.15982/j.issn.2095-7777.2016.04.006. [63] 吴伟仁, 王大轶, 黄翔宇, 等.月球软着陆自主障碍识别与避障制导方法[J].中国科学:信息科学, 2015, 45(8): 1046-1059. DOI: 10.1360/N112015-00120. WU Weiren, WANG Dayi, HUANG Xiangyu, et al. Autonomous hazard detection and avoidance guidance method for soft lunar landing[J]. Science in China(Information Sciences), 2015, 45(8): 1046-1059. DOI: 10.1360/N112015-00120. [64] 张荣桥, 黄江川, 赫荣伟, 等.小行星探测发展综述[J].深空探测学报, 2019, 6(5): 417-423,455. DOI: 10.15982/j.issn.2095-7777.2019.05.002. ZHANG Rongqiao, HUANG Jiangchuan, HE Rongwei, et al. The development overview of asteroid exploration[J]. Journal of Deep Space Exploration, 2019, 6(5): 417-423,455. DOI: 10.15982/j.issn.2095-7777.2019.05.002. [65] FARLEY K A, WILLIFORD K H, STACK K M, et al. Mars 2020 mission overview[J]. Space Science Reviews, 2020, 216(8): 142. DOI: 10.1007/s11214-020-00762-y. [66] 吴伟仁, 王大轶, 李骥, 等.月球软着陆避障段定点着陆导航方法研究[J].中国科学:信息科学,2011,41(9): 1054-1063. WU Weiren, WANG Dayi, LI Ji, et al. Research of the pinpoint landing navigation method in the hazard avoidance phase of lunar landing[J]. Science in China(Information Sciences), 2011,41(9): 1054-1063. [67] BENNETT F V. Apollo experience report-mission planning for lunar module descent and ascent[M]. USA:NASA, 1972. [68] 吴伟仁,李骥,黄翔宇,等.惯导/测距/测速相结合的安全软着陆自主导航方法[J]. 宇航学报,2015,36(8):893-899. WU Weiren, LI Ji, HUANG Xiangyu, et al. INS rangefinder/velocimetry method of safe landing[J]. Journal of Astronautics, 2015,36(8):893-899. [69] 张洪华, 梁俊, 黄翔宇, 等.嫦娥三号自主避障软着陆控制技术[J].中国科学:技术科学, 2014, 44(6):559-568. DOI: 10.1360/092014-51. ZHANG Honghua, LIANG Jun, HUANG Xiangyu, et al. Autonomous hazard avoidance control for Chang'e-3 soft landing[J]. Scientia Sinica Technologica, 2014, 44(6): 559-568. DOI: 10.1360/092014-51. [70] 崔平远, 秦同, 朱圣英.火星动力下降自主导航与制导技术研究进展[J].宇航学报, 2020, 41(1): 1-9. DOI: 10.3873/j.issn.1000-1328.2020.01.001. CUI Pingyuan, QIN Tong, ZHU Shengying. Progress in autonomous navigation and guidance technology for Mars powered descent landing[J]. Journal of Astronautics, 2020, 41(1): 1-9. DOI: 10.3873/j.issn.1000-1328.2020.01.001. [71] 赵宇, 王晓磊, 黄翔宇, 等.天问一号火星软着陆制导、导航与控制系统[J].空间控制技术与应用, 2021, 47(5): 48-57. DOI: 10.3969/j.issn.1674-1579.2021.05.007. ZHAO Yu, WANG Xiaolei, HUANG Xiangyu, et al. Tianwen-1 lander guidance navigation and control system for Mars soft landing[J]. Aerospace Control and Application, 2021, 47(5): 48-57. DOI: 10.3969/j.issn.1674-1579.2021.05.007. [72] JOHNSON A, BERGH C, CHENG Y, et al. Design and ground test results for the lander vision system [C]//Proceedings of the 36th Annual American-Astronautical-Society Rocky Mountain Section Guidance and Control Conference. Breckenridge, CO, USA: AAS GN&C, 2013. [73] 张成渝, 梁潇, 吴奋陟, 等.小行星探测下降着陆段光学导航技术发展综述[J].红外与激光工程, 2020, 49(5): 113-124. DOI: 10.3788/IRLA20201009. ZHANG Chengyu, LIANG Xiao,WU Fenzhi, et al. Overview of optical navigation for asteroid exploration descent and landing[J]. Infrared and Laser Engineering, 2020, 49(5): 113-124. DOI: 10.3788/IRLA20201009. [74] WILLIAMS B, ANTREASIAN P, CARRANZA E, et al. OSIRIS-REx flight dynamics and navigation design[J]. Space Science Reviews, 2018, 214(4): 69. DOI: 10.1007/s11214-018-0501-x. [75] KIKUCHI S, SAIKI T, TAKEI Y, et al. Hayabusa2 pinpoint touchdown near the artificial crater on Ryugu: trajectory design and guidance performance[J]. Advances in Space Research, 2021, 68(8): 3093-3140. DOI: 10.1016/j.asr.2021.07.031. [76] CAI Y Q, TONG X H, TONG P, et al. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging[J]. Applied Optics, 2010, 49(34): H11-H19. DOI: 10.1364/AO.49.000H11. [77] 栾奎峰, 童小华, 舒嵘, 等.嫦娥三号激光三维成像系统全链路误差分析与仿真[J].同济大学学报(自然科学版), 2019,47(6): 863-887. DOI: 10.11908/j.issn.0253-374x.2019.06.017. LUAN Kuifeng, TONG Xiaohua, SHU Rong, et al. Full link error analysis and simulation of Chang'e-3 laser three-dimensional imaging system[J]. Journal of Tongji University (Natural Science), 2019,47(6): 863-887. DOI: 10.11908/j.issn.0253-374x.2019.06.017. [78] 袁利, 李骥.航天器惯性及其组合导航技术发展现状[J].导航与控制, 2020, 19(Z1): 53-63. DOI: 10.3969/j.issn.1674-5558.2020.h4.007. YUAN Li, LI Ji. The development of inertial and integrated navigation technology for spacecraft[J]. Navigation and Control, 2020, 19(Z1): 53-63. DOI: 10.3969/j.issn.1674-5558.2020.h4.007. [79] 徐西宝, 白成超, 陈宇燊, 等.月/火探测软着陆制导技术发展综述[J].宇航学报, 2020, 41(6): 719-729. DOI: 10.3873/j.issn.1000-1328.2020.06.009. XU Xibao, BAI Chengchao, CHEN Yushen, et al. A survey of guidance technology for Moon/Mars soft landing[J]. Journal of Astronautics, 2020, 41(6): 719-729. DOI: 10.3873/j.issn.1000-1328.2020.06.009. [80] 张洪华,李骥,于萍,等.嫦娥五号月面起飞上升制导导航与控制技术[J].中国科学:技术科学, 2021, 51(8): 921-937. ZHANG Honghua, LI Ji, YU Ping, et al. Guidance navigation and control technology for the lunar ascent vehicle of the Chang'e-5 mission[J]. Scientia Sinica Technological, 2021, 51(8): 921-937. [81] 王大轶,徐超,黄翔宇.深空探测着陆过程序列图像自主导航综述[J].哈尔滨工业大学学报, 2016, 48(4): 1-12. DOI: 10.1360/SST-2021-0102. WANG Dayi, XU Chao, HUANG Xiangyu. Overview of autonomous navigation based on sequential images for planetary landing[J]. Journal of Harbin Institute of Technology, 2016, 48(4): 1-12. DOI: 10.1360/SST-2021-0102. [82] JOHNSON A, KEIM J, IVANOV T. Analysis of flash Lidar field test data for safe lunar landing[C]//Proceedings of 2010 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2010. [83] 黄翔宇, 徐超, 胡荣海, 等.火星精确定点着陆多信息融合自主导航与控制方法研究[J].深空探测学报, 2019, 6(4): 348-357. DOI: 10.15982/j.issn.2095-7777.2019.04.006. HUANG Xiangyu, XU Chao, HU Hairong, et al. Research of autonomous navigation and control scheme based on multi-information fusion for Mars pinpoint landing[J]. Journal of Deep Space Exploration, 2019, 6(4): 348-357. DOI: 10.15982/j.issn.2095-7777.2019.04.006. [84] 谢欢, 童小华, 晏雄锋, 等.小行星形貌重建与附着陆定位导航[C]//深空探索科学技术与应用中国工程科技论坛. 深圳:[s.n.], 2021:18-19. XIE Huan, TONG Xiaohua, YAN Xiongfeng, et al. Asteroid topography reconstruction and landing site positioning and navigation [C]//Proceedings of 2021 Deep Space Exploration Science and Technology and Application China Engineering Science and Technology Forum. Shenzhen:[s.n.], 2021:18-19. [85] 吴伟仁, 于登云, 王赤, 等.嫦娥四号工程的技术突破与科学进展[J].中国科学:信息科学, 2020, 50(12): 15. WU Weiren, YU Dengyun, WANG Chi, et al. Technological breakthrough and scientific achievement of Chang'e-4 project[J]. Science in China(Information Sciences), 2020, 50(12): 15. [86] 吴伟仁, 周建亮, 王保丰, 等.嫦娥三号“玉兔号”巡视器遥操作中的关键技术[J].中国科学: 信息科学, 2014, 44(4): 425-427. WU Weiren, ZHOU Jianliang, WANG Baofeng, et al. Key technologies in the teleoperation of Chang'e-3 “Jade Rabbit” rover[J]. Science in China(Information Sciences), 2014, 44(4): 425-427. [87] 王晓岩, 刘建军, 张吴明, 等.行星无人探测车地形重构技术综述[J].天文研究与技术, 2016, 13(4): 9. DOI: 10.3969/j.issn.1672-7673.2016.04.012. WANG Xiaoyan, LIU Jianjun, ZHANG Wuming, et al. A review of planet rovers' rerrain reconstruction[J]. Astronomical Research and Technology, 2016, 13(4): 9. DOI: 10.3969/j.issn.1672-7673.2016.04.012. [88] 白成超.基于视/触信息的巡视器地形感知方法研究[D]. 哈尔滨:哈尔滨工业大学, 2019. BAI Chengchao. Research on vision/ vibration based terrain perception for rovers[D]. Harbin: Harbin Institute of Technology, 2019. [89] BIESIADECKI J J, MAIMONE M W. The Mars exploration rover surface mobility flight software: driving ambition[C]//Proceedings of 2006 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2006. [90] 彭嫚, 万文辉, 吴凯, 等.嫦娥三号导航相机测图能力分析及地形重建[J].遥感学报, 2014, 18(5):995-1002. DOI: 10.11834/jrs.20144073. PENG Man, WAN Wenhui, WU Kai, et al. Topographic mapping capability analysis of Chang'e-3 Navcam stereo images and three-dimensional terrain reconstruction for mission operations[J]. Journal of Remote Sensing, 2014, 18(5):995-1002. DOI: 10.11834/jrs.20144073. [91] LI R, ARCHINAL B A, ARVIDSON R E, et al. Spirit rover localization and topographic mapping at the landing site of Gusev crater, Mars[J]. Journal of Geophysical Research: Planets, 2006, 111(E2). DOI: 10.1029/2005JE002483. [92] 童锋贤, 郑为民, 舒逢春.VLBI相位参考成像方法用于玉兔巡视器精确定位[J].科学通报, 2014(34): 8. DOI: 10.1360/N972014-00578. TONG Fengxian, ZHENG Weimin, SHU Fengchun, et al. Accurate relative positioning of Yutu lunar rover using VLBI phase-referencing mapping technology[J]. Chinese Science Bulletin, 2014(34): 8. DOI: 10.1360/N972014-00578. [93] GREEN D N, SASIADEK J Z. Path tracking, obstacle avoidance and dead reckoning by an autonomous planetary rover[J]. International Journal of Heavy Vehicle Systems, 1998, 5(1): 1-24. DOI: 10.1504/IJHVS.1998.054599. [94] ZHAN Y, ZHENG Y, LI C, et al. High-accuracy absolute positioning for the stationary planetary rover by integrating the star sensor and inclinometer[J]. Journal of Field Robotics, 2020, 37(6): 1063-1076. DOI: 10.1002/rob.21944. [95] HELMICK D M, ROUMELIOTIS S I, Cheng Y, et al. Slip-compensated path following for planetary exploration rovers[J]. Advanced Robotics, 2006, 20(11): 1257-1280. DOI: 10.1163/156855306778792470. [96] 叶培建, 孟林智, 马继楠, 等.深空探测人工智能技术应用及发展建议[J].深空探测学报, 2019, 6(4): 303-316,383. DOI: 10.15982/j.issn.2095-7777.2019.04.001. YE Peijian, MENG Linzhi, MA Jinan, et al. Suggestions on artificial intelligence technology application and development in deep space exploration[J]. Journal of Deep Space Exploration, 2019, 6(4): 303-316,383. DOI: 10.15982/j.issn.2095-7777.2019.04.001. [97] 于登云, 张哲, 泮斌峰, 等.深空探测人工智能技术研究与展望[J].深空探测学报, 2020, 7(1): 11-23. DOI: 10.15982/j.issn.2095-7777.2020.20190916001. YU Dengyun, ZHANG Zhe, PAN Binfeng, et al. Devel-opment and trend of artificial intelligent in deep space exploration[J]. Journal of Deep Space Exploration, 2020, 7(1): 11-23. DOI: 10.15982/j.issn.2095-7777.2020.20190916001. [98] ISKENDERIAN T C. Deployment process, mechanization, and testing for the Mars Exploration Rovers[C]//Proceedings of the 37th Aerospace Mechanisms Symposium. Galveston, TX, USA: AMS, 2004. [99] 刘传凯, 王保丰, 王镓, 等.嫦娥三号巡视器的惯导与视觉组合定姿定位[J].飞行器测控学报, 2014, 33(3): 250-257. DOI: 10.7642/j.issn.1674-5620.2014-03-0250-08. LIU Chuankai, WANG Baofeng, WANG Jia, et al. Integrated INS and vision-based orientation determination and positioning of CE-3 lunar rover[J]. Journal of Spacecraft TT & C Technology, 2014, 33(3): 250-257. DOI: 10.7642/j.issn.1674-5620.2014-03-0250-08. [100] EISENMAN A, LIEBE C C, MAIMONE M W, et al. Mars exploration rover engineering cameras[C]//Proceedings of 2001 SPIE-The International Society for Optical Engineering, Toulouse, France: SPIE, 2001. [101] 邸凯昌, 王镓, 邢琰, 等.深空探测车环境感知与导航定位技术进展与展望[J].测绘学报, 2021, 50(11): 1457-1468. DOI: 10.11947/j.AGCS.2021.20210290. DI Kaichang, WANG Jia, XING Yan, et al. Progresses and prospects of environment perception and navigation for deep space exploration rovers[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1457-1468. DOI: 10.11947/j.AGCS.2021.20210290. [102] LIU Z Q, DI K C, PENG M, et al. High precision landing site mapping and rover localization for Chang'e-3 mission[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(1): 1-11. DOI: 10.1007/s11433-014-5612-0. [103] 王保丰, 周建亮, 唐歌实, 等.嫦娥三号巡视器视觉定位方法[J].中国科学:信息科学, 2014, 44(4): 452-460. DOI: 10.1360/N112013-00226. WANG Baofeng, ZHOU Jianliang, TANG Geshi, et al. Research on visual localization method of lunar rover[J]. Science in China(Information Sciences), 2014, 44(4): 452-460. DOI: 10.1360/N112013-00226. [104] 刘少创, 贾阳, 马友青, 等.嫦娥三号月面巡视探测器高精度定位[J].科学通报, 2015, 60(4): 372-378. DOI: 10.1360/N972014-00455. LIU Shaochuang, JIA Yang, MA Youqing, et al. High precision localization of the Chang'e-3 lunar rover[J]. Chinese Science Bulletin, 2015, 60(4): 372-378. DOI: 10.1360/N972014-00455. [105] TAKETOMI T, UCHIYAMA H, IKEDA S. Visual SLAM algorithms: a survey from 2010 to 2016[J]. IPSJ Transactions on Computer Vision and Applications, 2017, 9(1): 1-11. DOI: 10.1186/s41074-017-0027-2. [106] MATTHIES L H, OLSON C F, THARP G, et al. Visual localization methods for Mars rovers using lander, rover, and descent imagery[C]//Proceedings of the 4th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Tokyo, Japan: i-SAIRAS, 1997: 413-418. [107] DI K C, LIU Z, YUE Z. Mars rover localization based on feature matching between ground and orbital imagery[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(8): 781-791. DOI: 10.14358/PERS.77.8.781. [108] BALARAM B, CANHAM T, DUNCAN C, et al. Mars helicopter technology demonstrator[C]//Proceedings of 2018 AIAA Atmospheric Flight Mechanics Conference. Kissimmee. FL, USA: AIAA AFM, 2018. [109] BALARAM J, AUNG M M, GOLOMBEK M P. The ingenuity helicopter on the perseverance rover[J]. Space Science Reviews, 2021, 217(4): 56. DOI: 10.1007/s11214-021-00815-w. |
[1] | 李德仁, 王密, 杨芳. 新一代智能测绘遥感科学试验卫星珞珈三号01星[J]. 测绘学报, 2022, 51(6): 789-796. |
[2] | 邸凯昌, 王镓, 邢琰, 刘召芹, 万文辉, 彭嫚, 王晔昕, 刘斌, 于天一, 李立春, 刘传凯. 深空探测车环境感知与导航定位技术进展与展望[J]. 测绘学报, 2021, 50(11): 1457-1468. |
[3] | 叶茂, 李斐, 鄢建国, 郝卫峰, 杨轩, 金炜桐, 曲春凯. 深空探测器精密定轨与重力场解算系统(WUDOGS)及其应用分析[J]. 测绘学报, 2017, 46(3): 288-296. |
[4] | 周欢, 童锋贤, 李海涛, 郑为民, 董光亮, 李培佳, 舒逢春. 深空探测器同波束相位参考成图相对定位方法[J]. 测绘学报, 2015, 44(6): 634-640. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||