测绘学报 ›› 2017, Vol. 46 ›› Issue (10): 1760-1769.doi: 10.11947/j.AGCS.2017.20170410
李海森1,2, 魏波1,2, 杜伟东1,2
收稿日期:
2017-06-20
修回日期:
2017-09-12
出版日期:
2017-10-20
发布日期:
2017-10-26
通讯作者:
杜伟东
E-mail:dwd361@163.com
作者简介:
李海森(1962-),男,教授,博士生导师,研究方向为水下目标探测与定位。
LI Haisen1,2, WEI Bo1,2, DU Weidong1,2
Received:
2017-06-20
Revised:
2017-09-12
Online:
2017-10-20
Published:
2017-10-26
摘要: 随着近年人们对海洋科学研究的迫切需要,水下目标精细探测与成像声呐技术逐步成为国内外研究的热点。本文重点分析了国内外主流多波束测深声呐技术与合成孔径技术的发展现状和趋势,并结合二者技术优势提出了一种多波束合成孔径声呐探测机理。研究讨论了多波束合成孔径声呐关键技术的研究进展,通过试验,初步验证了其探测机理的有效性和提升水下目标分辨能力的潜力。
中图分类号:
李海森, 魏波, 杜伟东. 多波束合成孔径声呐技术研究进展[J]. 测绘学报, 2017, 46(10): 1760-1769.
LI Haisen, WEI Bo, DU Weidong. Technical Progress in Research of Multibeam Synthetic Aperture Sonar[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1760-1769.
[1] 李海森, 周天, 徐超. 多波束测深声纳技术研究新进展[J]. 声学技术, 2013, 32(2):73-80. LI Haisen, ZHOU Tian, XU Chao. New Developments on the Technology of Multi-beam Bathymetric Sonar[J]. Technical Acoustics, 2013, 32(2):73-80. [2] 周天, 欧阳永忠, 李海森. 浅水多波束测深声纳关键技术剖析[J]. 海洋测绘, 2016, 36(3):1-6. ZHOU Tian, OUYANG Yongzhong, LI Haisen. Key Technologies of Shallow Water Multibeam Bathymetric Sonar[J]. Hydrographic Surveying and Charting, 2016, 36(3):1-6. [3] 王晓峰. 成像声纳波束形成新技术研究[D]. 哈尔滨:哈尔滨工程大学, 2011. WANG Xiaofeng. The Study of the Beam Forming New Technologies for Imaging Sonar[D]. Harbin:Harbin Engineering University, 2011. [4] 周天, 李海森, 朱建军, 等. 利用多角度海底反向散射信号进行地声参数估计[J]. 物理学报, 2014, 63(8):084302. ZHOU Tian, LI Haisen, ZHU Jianjun, et al. A Geoacoustic Estimation Scheme Based on Bottom Backscatter Signals from Multiple Angles[J]. Acta Physica Sinica, 2014, 63(8):084302. [5] 勇俊. 基于二维成像声纳的水下运动目标定位技术研究[D]. 哈尔滨:哈尔滨工程大学, 2012. YONG Jun. Research on Positioning Techniques of the Underwater Moving Target Track Based on Two-dimensional Imaging Sonar[D]. Harbin:Harbin Engineering University, 2012. [6] SAEBO T O, CALLOW H J, HANSEN R E, et al. Bathymetric Capabilities of the HISAS Interferometric Synthetic Aperture Sonar[M]//Proceedings of Oceans 2007. Vancouver, BC, Canada:IEEE, 2007:1-10. [7] BLOMBERG A E A, NILSEN C C, AUSTENG A, et al. Adaptive Sonar Imaging Using Aperture Coherence[J]. IEEE Journal of Oceanic Engineering, 2013, 38(1):98-108. [8] 丁继胜, 董立峰, 唐秋华, 等. 高分辨率多波束声纳系统海底目标物检测技术[J]. 海洋测绘, 2014, 34(5):62-64, 71. DING Jisheng, DONG Lifeng, TANG Qiuhua, et al. Detection Technology of Underwater Target Based on High-resolution Multibeam Sonar System[J]. Hydrographic Surveying and Charting, 2014, 34(5):62-64, 71. [9] 杨敏, 宋士林, 徐栋, 等. 合成孔径声纳技术以及在海底探测中的应用研究[J]. 海洋技术学报, 2016, 35(2):51-55. YANG Min, SONG Shilin, XU Dong, et al. Research on the Synthetic Aperture Sonar Technology and Its Application in Seafloor Exploration[J]. Journal of Ocean Technology, 2016, 35(2):51-55. [10] DU Weidong, ZHOU Tian, LI Haisen, et al. ADOS-CFAR Algorithm for Multibeam Seafloor Terrain Detection[J]. International Journal of Distributed Sensor Networks, 2016, 12(8):1719237. [11] KOÖNNECKE S. The new Atlas Fansweep 30 Coastal:A Tool for Efficient and Reliable Hydrographic Survey[C]//Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Germany:ASME, 2006:257-261. [12] 周天, 李海森, 么彬, 等. 具有超宽覆盖指向性的多线阵组合声基阵:中国, CN101149434A[P]. 2008-03-26. ZHOU Tian, LI Haisen, YAO Bin, et al. Multiple Linear Array Combined Acoustic Array With Super Broad Cover Directivity:China, CN101149434A[P]. 2008-03-26. [13] 李海森, 李珊, 周天. 基于空间平滑的多波束测深声纳相干分布源方位估计[J]. 振动与冲击, 2014, 33(4):138-142. LI Haisen, LI Shan, ZHOU Tian. DOA Estimation Based on Spatial Smoothing for Multi-beam Bathymetric Sonar Coherent Distributed Sources[J]. Journal of Vibration and Shock, 2014, 33(4):138-142. [14] YANG T C. Source Depth Estimation Based on Synthetic Aperture Beamfoming for a Moving Source[J]. The Journal of the Acoustical Society of America, 2015, 138(3):1678-1686. [15] 周天, 朱志德, 李海森, 等. 多子阵幅度-相位联合检测法在多波束测深系统中的应用[J]. 海洋测绘, 2004, 24(4):7-10. ZHOU Tian, ZHU Zhide, LI Haisen, et al. The Application of Multi-subarray Amplitude-phase United Detection Method in Multi-beam Bathymetry System[J]. Hydrographic Surveying and Charting, 2004, 24(4):7-10. [16] YANG Yuchun, JIAO Junsheng. Phase Difference Technology Apply to the Sounding of Broadband Multi-beam Bathymetry Sonar[C]//Proceedings of the 2016 IEEE/OES China Ocean Acoustics (COA). Harbin, China:IEEE, 2016:1-6. [17] 李海森, 鲁东, 周天. 基于FPGA的多波束实时动态聚焦波束形成方法[J]. 振动与冲击, 2014, 33(3):83-88. LI Haisen, LU Dong, ZHOU Tian. Multi-beam Real-time Dynamic Focused Beam-forming Method Based on FPGA[J]. Journal of Vibration and Shock, 2014, 33(3):83-88. [18] 阳凡林, 卢秀山, 李家彪, 等. 多波束勘测运动传感器偏移的改正方法[J]. 武汉大学学报(信息科学版), 2010, 35(7):816-820. YANG Fanlin, LU Xiushan, LI Jiabiao, et al. Correction of Imperfect Alignment of MRU for Multibeam Bathymetry Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7):816-820. [19] LANZONI J C, WEBER T C. High-Resolution Calibration of a Multibeam Echo Sounder[C]//Proceedings of the Oceans 2010 MTS/IEEE Seattle. Seattle, WA:IEEE, 2010:1-7. [20] WALSH G M. Final Report, Feasibility Study:Synthetic Aperture Array Techniques for high Resolution Ocean Bottom Mapping[M]. New York:[s.n.], 1967:851498. [21] HAYES M P, GOUGH P T. Synthetic Aperture Sonar:A Review of Current Status[J]. IEEE Journal of Oceanic Engineering, 2009, 34(3):207-224. [22] BONNETT B C. A Multi-Channel Front-end for Synthetic Aperture Sonar[D]. Canterbury:University of Canterbury, 2010:7-8. [23] 张春华, 刘纪元. 合成孔径声纳成像及其研究进展[J]. 物理, 2006, 35(5):408-413. ZHANG Chunhua LIU Jiyuan. Synthetic Aperture Sonar Imaging and Its Developments[J]. Physics, 2006, 35(5):408-413. [24] SÆBØ T O, LANGLI B. Comparison of EM 3000 Multibeam Echo Sounder and HISAS 1030 Interferometric Synthetic Aperture Sonar for Seafloor Mapping[C]//Proceedings of ECUA.[S.L.]:[s.n.], 2010:451-461. [25] BELLETTINI A, PINTO M A. Theoretical Accuracy of Synthetic Aperture Sonar Micronavigation Using a Displaced Phase-center Antenna[J]. IEEE Journal of Oceanic Engineering, 2002, 27(4):780-789. [26] DEL RIO VERA J, COIRAS E, GROEN J, et al. Automatic Target Recognition in Synthetic Aperture Sonar Images Based on Geometrical Feature Extraction[J]. EURASIP Journal on Advances in Signal Processing, 2009, 2009:109438. [27] LOPERA O. Combining Despeckling and Segmentation Techniques to Facilitate Detection and Identification of Seafloor Targets[C]//Proceedings of the Oceans12. Santander, Spain:In Oceans, 2012:1-4. [28] XU Kui, ZHONG Heping, HUANG Pan. A Fast Speckle Reduction Algorithm Based on GPU for Synthetic Aperture Sonar[J]. International Journal of Multimedia and Ubiquitous Engineering, 2016, 11(3):179-186. [29] 范乃强, 王英民, 陶林伟. 基于二次距离压缩的合成孔径声纳改进距离-多普勒算法[J]. 西北工业大学学报, 2016, 34(2):201-207. FAN Naiqiang, WANG Yingmin, TAO Linwei. Improved Range-Doppler Algorithm for Processing Synthetic Aperture Sonar Data Based on Secondary Range Compression[J]. Journal of Northwestern Polytechnical University, 2016, 34(2):201-207. [30] PAN Xiang, CHEN Qing, XU Wen, et al. Shallow-water Wideband Low-frequency Synthetic Aperture Sonar for an Autonomous Underwater Vehicle[J]. Ocean Engineering, 2016, 118:117-129. [31] LOPERA O, DUPONT Y. Automated Target Recognition with SAS:Shadow and Highlight-based Classification[C]//Proceedings of the 2012 Oceans. Hampton Roads, VA:IEEE, 2012:1-5. [32] BAMLER R. A Comparison of Range-doppler and Wavenumber Domain SAR Focusing Algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4):706-713. [33] JAKOWATZ JR C V, WAHL D E, EICHEL P H, et al. Spotlight-Mode Synthetic Aperture Radar:A Signal Processing Approach[M]. Boston:Kluwer Academic Publishers, 1996. [34] LEGRIS M, JEAN F. Comparison between DPCA Algorithm and Inertial Navigation on the Ixsea Shadows SAS[C]//Proceedings of OCEANS 2007-Europe. Aberdeen:IEEE, 2007:1-6. [35] SAWA T. Synthetic Aperture Processing System and Synthetic Aperture Processing Method:Japan, EP20080721583[P].2010-12-01. [36] http://www.shallowsurvey2015.org/SS2015_Session01_Kongsberg. [37] 徐剑. 多波束合成孔径声纳模型仿真与成像技术研究[D]. 哈尔滨:哈尔滨工程大学, 2014. XU Jian. Research for Model Construction and Imaging Technology Based on Multi-beam Synthetic Aperture Sonar[D]. Harbin:Harbin Engineering University, 2014. [38] SUN Wei, ZHOU Tian, WANG Xiaojing, et al. Study of Multibeam Synthetic Aperture Interferometric Imaging Algorithm[M]//YANG L, ZHAO M. International Industrial Informatics and Computer Engineering Conference (ⅢCEC 2015). Xi'an, Shaanxi, China:Atlantis Press, 2015:1543-1546. [39] 周天, 李海森, 徐剑, 等. 用于多波束合成孔径声纳的组合声基阵:中国, CN101907707A[P]. 2010-12-08. ZHOU Tian, LI Haisen, XU Jian, et al. Combined Acoustic Array for Multi-Beam Synthetic Aperture Sonar:China, CN101907707A[P]. 2010-12-08. [40] 刘维, 张春华, 刘纪元. 合成孔径声纳三维数据仿真研究[J]. 系统仿真学报, 2008, 20(14):3838-3841. LIU Wei, ZHANG Chunhua, LIU Jiyuan. Research on Synthetic Aperture Sonar 3D Data Simulation[J]. Journal of System Simulation, 2008, 20(14):3838-3841. [41] 范旻. SAS中正侧视CS成像算法及其基于斜视角的改进研究[D]. 昆明:云南大学, 2014. [42] COOK D A, CHRISTOFF J T, FERNANDEZ J E. Motion Compensation of AUV-based Synthetic Aperture Sonar[C]//Proceedings of Oceans 2003. San Diego, CA:IEEE, 2003, 4:2143-2148. [43] 姜南, 孙大军, 田坦. 基于时延和相位估计的合成孔径声纳运动补偿研究[J]. 声学学报, 2003, 28(5):434-438. JIANG Nan, SUN Dajun, TIAN Tan. A Study on SAS Movement Compensation Based on Time Delay and Phase Estimation[J]. Acta Acustica, 2003, 28(5):434-438. [44] HUNTER A J, DUGELAY S, FOX W L J. Repeat-Pass Synthetic Aperture Sonar Micronavigation Using Redundant Phase Center Arrays[J]. IEEE Journal of Oceanic Engineering, 2016,41(4):820-830. DOI:10.1109/JOE.2016.2524498. |
[1] | 张烁, 陈丽平, 李铁映, 鄢咏折, 邓湘金, 顾征, 郑燕红, 马友青, 亓晨, 刘少创. 嫦娥五号探测器月面采样封装任务的定位精度[J]. 测绘学报, 2022, 51(5): 631-639. |
[2] | 唐晓芳, 詹总谦, 丁久婕, 刘佳辉, 熊子柔. 顾及超像素光谱特征的无人机影像自动模糊聚类分割法[J]. 测绘学报, 2022, 51(5): 677-690. |
[3] | 周宝定, 张文香, 黄金彩, 李清泉. 基于众源数据的室内外一体化行人路网构建[J]. 测绘学报, 2022, 51(5): 718-728. |
[4] | 王晨捷, 罗斌, 李成源, 王伟, 尹露, 赵青. 无人机视觉SLAM协同建图与导航[J]. 测绘学报, 2020, 49(6): 767-776. |
[5] | 王乐洋, 高华, 冯光财. 利用InSAR和GPS数据分析台湾西南两次Mw>6地震的触发关系及应力影响[J]. 测绘学报, 2019, 48(10): 1244-1253. |
[6] | 张恒璟, 崔东东, 程鹏飞. CORS站高程非线性速度场及方差波动模型构建方法[J]. 测绘学报, 2019, 48(9): 1096-1106. |
[7] | 赵建虎, 梁文彪. 海底控制网测量和解算中的几个关键问题[J]. 测绘学报, 2019, 48(9): 1197-1202. |
[8] | 陈张雷, 李崇辉, 郑勇, 陈冰, 何东汉. 天文定位中几何精度衰减因子最小值分析[J]. 测绘学报, 2019, 48(7): 879-888. |
[9] | 姚朝龙, 罗志才, 胡月明, 王长委, 张瑞, 李金明. 利用GPS垂向位移监测西南地区干旱事件[J]. 测绘学报, 2019, 48(5): 547-554. |
[10] | 鲁铁定, 吴光明, 周世健. 病态不确定性平差模型的岭估计算法[J]. 测绘学报, 2019, 48(4): 403-411. |
[11] | 贺礼家, 冯光财, 冯志雄, 高华. 哨兵-2号光学影像地表形变监测:以2016年MW7.8新西兰凯库拉地震为例[J]. 测绘学报, 2019, 48(3): 339-351. |
[12] | 阮仁桂, 魏子卿, 贾小林. 一种基于星间单差模糊度固定的载波伪距生成方法[J]. 测绘学报, 2018, 47(12): 1591-1598. |
[13] | 李烁, 王慧, 耿则勋, 于翔舟, 卢兰鑫. 双范数混合约束的遥感影像亮度不均变分校正[J]. 测绘学报, 2018, 47(12): 1621-1629. |
[14] | 余建胜, 赵斌, 谭凯, 王东振. 汶川地震震后GNSS形变分析[J]. 测绘学报, 2018, 47(9): 1196-1206. |
[15] | 姜尚洁, 罗斌, 贺鹏, 杨国鹏, 顾亚平, 刘军, 张云, 张良培. 利用无人机多源影像检测车辆速度[J]. 测绘学报, 2018, 47(9): 1228-1237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||