[1] CHANG Guobin. Alternative Formulation of the Kalman Filter for Correlated Process and Observation Noise[J]. IET Science, Measurement & Technology, 2014, 8(5):310-318. [2] 杨元喜. 自适应动态导航定位[M]. 2版. 北京:测绘出版社, 2017. YANG Yuanxi. Adaptive Navigation and Kinematic Positioning[M]. 2nd ed. Beijing:Surveying and Mapping Press, 2017. [3] CRASSIDIS J L, JUNKINS J L. Optimal Estimation of Dynamic Systems[M]. 2nd ed. Boca Raton, FL:CRC Press, 2011. [4] 刘经南. 卫星网与地面网联合平差坐标转换模型的等价性[J]. 武汉测绘学院学报, 1983, 8(1):37-50. LIU Jingnan. The Equivalence of Mathematical Models for Coordinate Systems Transformation in the Adjustment for the Combination of Satellite and Terrestrial Network[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1983, 8(1):37-50. [5] 刘经南, 刘大杰. 大地坐标和地心坐标精度对联合平差的精度影响[J]. 测绘学报, 1985, 14(2):133-144. LIU Jingnan, LIU Dajie. The Influence of the Accuracy in Geodetic and Geocentric Coordinates on the Accuracy in the Results of Simultaneous Adjustment[J]. Acta Geodaetica et Cartographica Sinica, 1985, 14(2):133-144. [6] 刘经南, 刘大杰, 崔希璋. 卫星网与地面网联合平差的理论和应用[J]. 武汉测绘科技大学学报, 1987, 12(4):1-9. LIU Jingnan, LIU Dajie, CUI Xizhang. Theory and Application of the Combined Adjustment of Satellite and Terrestrial Network[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1987, 12(4):1-9. [7] XU Peiliang, LIU Jingnan, SHI Chuang. Total Least Squares Adjustment in Partial Errors-in-variables Models:Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8):661-675. [8] FANG Xing. Weighted Total Least Squares:Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87(8):733-749. [9] 曾文宪, 方兴, 刘经南, 等. 通用EIV平差模型及其加权整体最小二乘估计[J]. 测绘学报, 2016, 45(8):890-894, 903. DOI:10.11947/j.AGCS.2016.20150156. ZENG Wenxian, FANG Xing, LIU Jingnan, et al. Weighted Total Least Squares of Universal EIV Adjustment Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8):890-894, 903. DOI:10.11947/j.AGCS.2016.20150156. [10] JAZAERI S, AMIRI-SIMKOOEI A. Weighted Total Least Squares for Solving Non-linear Problem:GNSS Point Positioning[J]. Survey Review, 2015, 47(343):265-271. [11] FANG Xing. Weighted Total Least-squares with Constraints:A Universal Formula for Geodetic Symmetrical Transformations[J]. Journal of Geodesy, 2015, 89(5):459-469. [12] FANG Xing, WANG Jin, LI Bofeng, et al. On Total Least Squares for Quadratic form Estimation[J]. Studia Geophysica et Geodaetica, 2015, 59(3):366-379. [13] 王乐洋, 余航, 陈晓勇. Partial EIV模型的解法[J]. 测绘学报, 2016, 45(1):22-29. DOI:10.11947/j.AGCS.2016.20140560. WANG Leyang, YU Hang, CHEN Xiaoyong. An Algorithm for Partial EIV Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):22-29. DOI:10.11947/j.AGCS.2016.20140560. [14] 王乐洋, 余航, 李毅. 一种加权总体最小二乘问题的解法[J]. 中国矿业大学学报, 2016, 45(6):1263-1270. WANG Leyang, YU Hang, LI Yi. A Method for Weighted Total Least Squares Problem[J]. Journal of China University of Mining & Technology, 2016, 45(6):1263-1270. [15] FANG Xing, LI Bofeng, ALKHATIB H, et al. Bayesian Inference for the Errors-in-variables Model[J]. Studia Geophysica et Geodaetica, 2017, 61(1):35-52. [16] WANG Bin, LI Jiancheng, LIU Chao, et al. Generalized Total Least Squares Prediction Algorithm for Universal 3D Similarity Transformation[J]. Advances in Space Research, 2017, 59(3):815-823. [17] ZHOU Yongjun, GONG Jinghai, FANG Xing. Accurate Coupled Lines Fitting in an Errors-in-variables Framework[J]. Survey Review, 2017. DOI:10.1080/00396265.2017.1281095. [18] LIU Ji, MENDOZA S, LI Guang, et al. Efficient Total Least Squares State and Parameter Estimation for Differentially Flat Systems[C]//Proceedings of 2016 American Control Conference. Boston, MA:IEEE, 2016:5419-5424. [19] SCHAFFRIN B, IZ H B. Towards Total Kalman Filtering for Mobile Mapping[C]//Proceedings of the 5th International Symposium on Mobile Mapping Technology. Padua, Italy:ISPRS, 2007:270-275. [20] SCHAFFRIN B, UZUN S. Errors-in-variables for Mobile Mapping Algorithms in the Presence of Outliers[J]. Archives of Photogrammetry, Cartography and Remote Sensing, 2011, 22(3):377-387. [21] MAHBOUB V, SAADATSERESHT M, ARDALAN A A. A General Weighted Total Kalman Filter Algorithm with Numerical Evaluation[J]. Studia Geophysica et Geodaetica, 2017, 61(1):19-34. DOI:10.1007/s11200-016-0815-7. [22] 崔希璋, 於宗俦, 陶本藻, 等. 广义测量平差[M]. 2版. 武汉:武汉大学出版社, 2009. CUI Xizhang, YU Zongchou, TAO Benzao, et al. Generalized Surveying Adjustment[M]. 2nd ed. Wuhan:Wuhan University Press, 2009. [23] LI Zengke, CHANG Guobin, GAO Jingxiang, et al. GPS/UWB/MEMS-IMU Tightly Coupled Navigation with Improved Robust Kalman Filter[J]. Advances in Space Research, 2016, 58(11):2424-2434. [24] FARRELL J. Aided Navigation:GPS with High Rate Sensors[M]. New York:McGraw-Hill, Inc., 2008. [25] YUAN Xuebing, YU Shuai, ZHANG Shengzhi, et al. Quaternion-based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable Multi-sensor System[J]. Sensors, 2015, 15(5):10872-10890. |