[1] SANDWELL D T, SMITH W H F, GILLE S, et al. Bathymetry from Space:Rationale and Requirements for a New, High-resolution Altimetric Mission[J]. Comptes Rendus Geoscience, 2006, 338(14-15):1049-1062. [2] BORN G H, DUNNE J A, LAME D B. Seasat Mission Overview[J]. Science, 1979, 204(4400):1405-1406. [3] CHENEY R, DOUGLAS B, AGREEN R, et al. The Geosat Altimeter Mission:A Milestone in Satellite Oceanography[J]. EOS Transactions American Geophysical Union, 1986, 67(48):1354-1355. [4] GOTTSCHALK D. ERS-1 Mission and System Overview[J]. Die Geowissenschaften, 1991, 9(4-5):100-101. [5] FRANCIS C R, GRAF G, EDWARDS P G, et al. The ERS-2 Spacecraft and Its Payload[J]. ESA Bulletin,1995(83):13-31. [6] FU L M, CHRISTENSEN E J, YAMARONE C A JR, et al. TOPEX/Poseidon Mission Overview[J]. Journal of Geophysical Research:Oceans, 1994, 99(C12):24369-24381. [7] BAUDRY N, DIAMENT M, ALBOUY Y. Precise Location of Unsurveyed Seamounts in the Austral Archipelago Area Using Seasat Data[J]. Geophysical Journal of the Royal Astronomical Society, 1987, 89(3):869-888. [8] WILD-PFEIFFER F. A Comparison of Different Mass Elements for Use in Gravity Gradiometry[J]. Journal of Geodesy, 2008, 82(10):637-653. [9] SANDWELL D T, GILLE S T, ORCUTT J, et al. Bathymetry from Space is Now Possible[J]. EOS Transactions American Geophysical Union, 2003, 84(5):37-44. [10] LYONS S N, SANDWELL D T, SMITH W H F. Three-dimensional Estimation of Elastic Thickness Under the Louisville Ridge[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B6):13239-13252. [11] PARKER R L. The Rapid Calculation of Potential Anomalies[J]. Geophysical Journal International, 1973, 31(4):447-455. [12] WATTS A B. An Analysis of Isostasy in the World's Oceans 1. Hawaiian-Emperor Seamount Chain[J]. Journal of Geophysical Research:Solid Earth, 1978, 83(B12):5989-6004. [13] HWANG C. A Bathymetric Model for the South China Sea from Satellite Altimetry and Depth Data[J]. Marine Geodesy, 1999, 22(1):37-51. [14] VERGOS G S, SIDERIS M G. Improving the Estimation of Bottom Ocean Topography with Altimetry Derived Gravity Data Using the Integrated Inverse Method[M]//ÁDÁM J, SCHWARZ K P. Vistas for Geodesy in the New Millennium. Berlin:Springer, 2002:529-534. [15] MCMILLAN M, SHEPHERD A, VAUGHAN D G, et al. Amundsen Sea Bathymetry:The Benefits of Using Gravity Data for Bathymetric Prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12):4223-4228. [16] 罗佳, 李建成, 姜卫平, 等. 南海海底地形的卫星测高数据反演[J]. 海洋测绘, 2002, 22(1):8-10. LUO Jia, LI Jiancheng, JIANG Weiping, et al. Bathymetry Predication of the South China Sea from Satellite Altimeter Data[J]. Hydrographic Surveying and Charting, 2002, 22(1):8-10. [17] 罗佳, 李建成, 姜卫平. 利用卫星资料研究中国南海海底地形[J]. 武汉大学学报(信息科学版), 2002, 27(3):256-260. LUO Jia, LI Jiancheng, JIANG Weiping. Bathymetry Prediction of South China Sea from Satellite Data[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3):256-260. [18] 胡敏章, 李建成, 邢乐林. 由垂直重力梯度异常反演全球海底地形模型[J]. 测绘学报, 2014, 43(6):558-565, 574. DOI:10.13485/j.cnki.11-2089.2014.0090. HU Minzhang, LI Jiancheng, XING Lelin. Global Bathymetry Model Predicted from Vertical Gravity Gradient Anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6):558-565, 574. DOI:10.13485/j.cnki.11-2089.2014.0090. [19] 欧阳明达, 孙中苗, 翟振和. 基于重力地质法的南中国海海底地形反演[J]. 地球物理学报, 2014, 57(9):2756-2765. OUYANG Mingda, SUN Zhongmiao, ZHAI Zhenhe. Predicting Bathymetry in South China Sea Using the Gravity-geologic Method[J]. Chinese Journal of Geophysics, 2014, 57(9):2756-2765. [20] 欧阳明达, 孙中苗, 翟振和, 等. 采用重力异常的导纳理论推估海底地形[J]. 测绘学报, 2015, 44(10):1092-1099. DOI:10.11947/j.AGCS.2015.20140427. OUYANG Mingda, SUN Zhongmiao, ZHAI Zhenhe, et al. Bathymetry Prediction Based on the Admittance Theory of Gravity Anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10):1092-1099. DOI:10.11947/j.AGCS.2015.20140427. [21] 胡敏章, 李建成, 金涛勇, 等. 联合多源数据确定中国海及周边海底地形模型[J]. 武汉大学学报(信息科学版), 2015, 40(9):1266-1273. HU Minzhang, LI Jiancheng, JIN Taoyong, et al. Recovery of Bathymetry over China Sea and Its Adjacent Areas by Combination of Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1266-1273. [22] SMITH W H F, SANDWELL D T. Bathymetric Prediction from Dense Satellite Altimetry and Sparse Shipboard Bathymetry[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B11):21803-21824. [23] 付永涛, 范守志, 施小斌. 关于岩石圈有效弹性厚度的地质理解[J]. 地质科学, 2005, 40(4):585-593. FU Yongtao, FAN Shouzhi, SHI Xiaobin. Geological Interpretation of the Lithosphere Effective Elastic Thickness[J]. Chinese Journal of Geology, 2005, 40(4):585-593. [24] LEWIS B T R, DORMAN L M. Experimental Isostasy:2. An Isostatic Model for the U.S.A. Derived from Gravity and Topographic Data[J]. Journal of Geophysical Research, 1970, 75(17):3367-3386. [25] 苏达权. 海洋岩石圈板块有效弹性厚度研究[J]. 地球物理学报, 2012, 55(10):3259-3265. SU Daquan. A Study of the Effective Elastic Thickness of the Oceanic Lithosphere[J]. Chinese Journal of Geophysics, 2012, 55(10):3259-3265. [26] FOSTER M R. The Coefficient of Coherence:Its Estimation and Use in Geophysical Data Processing[J]. Geophysics, 1967, 32(4):602-616. [27] LUIS J F, NEVES M C. The Isostatic Compensation of the Azores Plateau:A 3D Admittance and Coherence Analysis[J]. Journal of Volcanology and Geothermal Research, 2006, 156(1-2):10-22. [28] SANDWELL D, GARCIA E, SOOFI K, et al. Toward 1-mGal Accuracy in Global Marine Gravity from CryoSat-2, Envisat, and Jason-1[J]. The Leading Edge, 2013, 32(8):892-899. [29] 王嘉沛, 申重阳, 玄松柏. 全球地壳模型CRUST1.0在青藏高原东南部的重力检核[J]. 大地测量与地球动力学, 2015, 35(4):621-626. WANG Jiapei, SHEN Chongyang, XUAN Songbai. Gravity Checking on the CRUST1.0 Model in the Southeastern Tibetan Plateau[J]. Journal of Geodesy and Geodynamics, 2015, 35(4):621-626. |