[1] 徐川, 华凤, 眭海刚, 等. 多尺度水平集SAR影像水体自动分割方法[J]. 武汉大学学报(信息科学版), 2014, 39(1):27-31. XU Chuan, HUA Feng, SUI Haigang, et al. Automatic water segmentation method in SAR images using multi-scale level Set[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1):27-31. [2] 张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3):269-277. ZHANG Qingjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):269-277. [3] 李景刚, 黄诗峰, 李纪人. ENVISAT卫星先进合成孔径雷达数据水体提取研究——改进的最大类间方差阈值法[J]. 自然灾害学报, 2010, 19(3):139-145. LI Jinggang, HUANG Shifeng, LI Jiren. Research on extrac-tion of water body from envisat ASAR images:a modified otsu threshold method[J]. Journal of Natural Disasters, 2010, 19(3):139-145. [4] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66. [5] LÜ Wentao, YU Qiuze, YU Wenxian. Water extraction in SAR images using GLCM and support vector machine[C]//IEEE 10th International Conference on Signal Processing Proceedings. Beijing, China:IEEE, 2010. [6] SILVEIRA M, HELENO S. Separation between water and land in SAR images using region-based level sets[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3):471-475. [7] KASS M, WITKIN A, TERZOPOULOS D. Snakes:active contour models[J]. International Journal of Computer Vision, 1988, 1(4):321-331. [8] 孟令奎, 吕琪菲. 复杂水体边界提取的改进正交T-Snake模型[J]. 测绘学报, 2015, 44(6):670-677. DOI:10.11947/j.AGCS.2015.20140404. MENG Lingkui, LÜ Qifei. Improved orthogonal T-snake model for complex water boundary extraction[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6):670-677. DOI:10.11947/j.AGCS.2015.20140404. [9] 韩斌, 吴一全. SAR图像河流分割的加权指数区域能量模型[J]. 测绘学报, 2017, 46(9):1174-1181. DOI:10.11947/j.AGCS.2017.20170134. HAN Bin, WU Yiquan. Weighted exponential region energy model for river segmentation of SAR images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9):1174-1181. DOI:10.11947/j.AGCS.2017.20170134. [10] GIUSTARINI L, VERNIEUWE H, VERWAEREN J, et al. Accounting for image uncertainty in SAR-based flood mapping[J]. International Journal of Applied Earth Observation and Geoinformation, 2015(34):70-77. [11] GIUSTARINI L, HOSTACHE R, KAVETSKI D, et al. Probabilistic flood mapping using synthetic aperture radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):6958-6969. [12] HOSTACHE R, MATGEN P, SCHUMANN G, et al. Water level estimation and reduction of hydraulic model calibration uncertainties using satellite SAR images of floods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2):431-441. [13] SCHUMANN G, MATGEN P, PAPPENBERGER F. Conditioning water stages from satellite imagery on uncertain data points[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4):810-813. [14] DI BALDASSARRE G, SCHUMANN G, BATES P D. A technique for the calibration of hydraulic models using uncertain satellite observations of flood extent[J]. Journal of Hydrology, 2009, 367(3-4):276-282. [15] MONTANARI M, HOSTACHE R, MATGEN P, et al. Calibration and sequential updating of a coupled hydrologic-hydraulic modelusing remote-sensing derived water stages[J]. Hydrology and Earth System Sciences, 2009, 13(3):367-380. [16] BEVEN K. A manifesto for the equifinality thesis[J]. Journal of Hydrology, 2006, 320(1-2):18-36. [17] WESTERHOFF R S, WINSEMIUS H C, HUIZINGA H J, et al. Automated global water mapping based on wide-swath orbital synthetic-aperture radar[J]. Hydrology and Earth System Sciences, 2013, 17(2):651-663. [18] CHINI M, GIUSTARINI L, HOSTACHE R, et al. An automatic SAR-based flood mapping algorithm combining hierarchical tiling and change detection[C]//ESA Living Planet Symposium. Prague, Czech Republic:ESA, 2016. [19] ULABY F T, MOORE R K, FUNG A K. Microwave remote sensing, active and passive:Vol Ⅱ:radar remote sensing and surface scattering and emission theory[M].[S.l.]:Artech House, 1982. [20] XIE Hua, PIERCE L E, ULABY F T. Statistical properties of logarithmically transformed speckle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3):721-727. [21] WILKS D S. Statistical methods in the atmospheric sciences[M]. Oxford:Academic Press, 2011:34. [22] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2):431-441. [23] CHINI M, HOSTACHE R, GIUSTARINI L, et al. A hierarchical split-based approach for parametric thresholding of SAR images:flood inundation as a test case[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):6975-6988. [24] SHI Zhenghao, FUNG K B. A comparison of digital speckle filters[C]//1994 IEEE International Geoscience and Remote Sensing Symposium. Pasadena, CA:IEEE. [25] HOSTACHE R, MATGEN P, MONTANARI A, et al. Propagation of uncertainties in coupled hydro-meteorological forecasting systems:a stochastic approach for the assessment of the total predictive uncertainty[J]. Atmospheric Research, 2011, 100(2-3):263-274. [26] HORRITT M S. A methodology for the validation of uncertain flood inundation models[J]. Journal of Hydrology, 2006, 326(1-4):153-165. [27] BRÖCKER J, SMITH L A. Increasing the reliability of reliability diagrams[J]. Weather and Forecasting, 2007, 22(3):651-661. |