测绘学报 ›› 2018, Vol. 47 ›› Issue (S0): 18-27.doi: 10.11947/j.AGCS.2018.20180286

• • 上一篇    下一篇

北斗IGSO卫星姿态零偏航状态下精密定轨

郭睿1,2,3, 周建华1, 胡小工2, 李晓杰1, 刘利1, 周善石2, 吴杉1   

  1. 1. 北京卫星导航中心, 北京 100094;
    2. 中国科学院上海天文台, 上海 200030;
    3. 大地测量与地球动力学国家重点实验室, 湖北 武汉 430077
  • 收稿日期:2018-06-20 修回日期:2018-10-03 出版日期:2018-12-31 发布日期:2019-05-18
  • 作者简介:郭睿(1982-),男,博士,高级工程师,研究方向为卫星导航、精密定轨与时间同步。E-mail:shimbarsalon@163.com
  • 基金资助:
    国家自然科学基金(41204022;41874043);大地测量与地球动力学国家重点实验室开放研究基金(SKLGED2017-3-3-E)

Precise Orbit Determination for the BDS IGSO Satellites Under the Yaw-steering Mode

GUO Rui1,2,3, ZHOU Jianhua1, HU Xiaogong2, LI Xiaojie1, LIU Li1, ZHOU Shanshi2, WU Shan1   

  1. 1. Beijing Satellite Navigation Center, Beijing 100094, China;
    2. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China;
    3. State Key Laboratory of Geodesy and Earth's Dynamics, Wuhan 430077, China
  • Received:2018-06-20 Revised:2018-10-03 Online:2018-12-31 Published:2019-05-18
  • Supported by:
    The National Natural Science Foundation of China (Nos. 41204022;41874043);The State Key Laboratory of Geodesy and Earth's Dynamics Foundation of China (No. SKLGED2017-3-3-E)

摘要: 考虑到卫星平台供电和卫星安全等因素,北斗系统IGSO卫星姿态采用动态偏置与零偏置相结合的控制方式。在不同的控制模式下,卫星本体和太阳帆板受照条件存在一定的差异,动偏期间的力学模型不适用于零偏期间,零偏期间的IGSO卫星定轨精度衰减非常明显,致使重点地区系统服务平均可用性降低2%,其他地区降低4%,系统服务性能受到严重挑战。针对该问题,本文提出了钟差约束条件下的零偏状态定轨方案,设计了详细的钟差应用策略、系统差控制策略和力学模型误差补偿策略,解决了IGSO卫星零偏期间精密定轨问题,实现了动偏转零偏、零偏转动偏两个状态变化前后卫星轨道产品的“无缝衔接”,导航服务未中断,卫星空间信号精度保持了连续和稳定。实测数据的试验结果表明:①C06卫星的UERE由2.95 m提高为1.22 m,C09卫星的UERE由6.29 m提高为1.54 m;②C06和C09卫星UERE小于2.5 m概率分别由59.87%和35.04%提高为94.85%和88.49%,UERE小于5 m概率分别由92.10%和71.67%提高为99.98%和99.43%。

关键词: 北斗卫星导航系统, IGSO卫星, 零偏航, 卫星姿态, 双向频率传递

Abstract: Considering the energy supply and security factors, both the orbit-normal mode and the yaw-steering mode are adopted in the BDS IGSO attitude control system. The irradiation instances for the satellite body and solar panel are different for the two attitude control mode, with different dynamic models. If using the ordinary dynamic models in the precise orbit determination (POD), the POD accuracy declines seriously during the yaw-steering period. Therefore the average availability falls 2% in the BDS key service area, and 4% in the BDS total service area, the service performance faces serious challenges. A new POD strategy is brought forward with the restriction of time offsets in this paper for the BDS IGSO satellites during the yaw-steering period. The time offsets application strategy, systematic error controlling strategy, and dynamic models errors compensation strategy are designed in this paper in order to solve the BDS IGSO POD accuracy falling problem. The IGSO satellites ephemeris is consecutive for the transformations between the orbit-normal mode and the yaw-steering mode. The BDS navigation service is consecutive, with the continuous and steady space signal accuracy for the IGSO satellites. POD experiments were carried out during the BDS IGSO yaw-steering period. Results showed that the user equivalent ranging error (UERE) is improved from 2.95 m to 1.22 m for the BDS C06 satellite, and from 6.29 m to 1.54 m for the BDS C09 satellite. The ratio of UERE less than 2.5 m is improved from 59.87% to 94.85% for the C06 satellite, and from 35.04% to 88.49% for the C09 satellite. And the ratio of UERE less than 5 m is improved from 92.10% to 99.98%for the C06 satellite, and from 71.67% to 99.43% for the C09 satellite.

Key words: BDS, IGSO, yaw-steering, satellite attitude, two-way frequency transfer

中图分类号: