[1] 姜兆英, 刘国林, 陶秋香. 短基线集形变模型反演的正则化解算方法[J]. 测绘学报, 2016, 45(5): 566-573. DOI: 10.11947/j.AGCS.2016.20150143. JIANG Zhaoying, LIU Guolin, TAO Qiuxiang. Regularization solution of small baseline subset deformation model inversion[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):556-573. DOI: 10.11947/j.AGCS.2016.20150143. [2] 薛树强, 杨元喜, 党亚民. 测距定位方程非线性平差的封闭牛顿迭代公式[J]. 测绘学报, 2014, 43(8): 771-777. XUE Shuqiang, YANG Yuanxi, DANG Yamin. A closed-form of Newton iterative formula for nonlinear adjustment of distance equations[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8): 771-777. [3] 高飞, 童恒庆. 基于改进粒子群优化的非线性最小二乘估计[J]. 系统工程与电子技术, 2006, 28(5): 775-778. GAO Fei, TONG Hengqing. Nonlinear least squares estimation based on improved particle swarm optimization[J]. Systems Engineering and Electronics, 2006, 28(5): 775-778. [4] FANG Xing. On non-combinatorial weighted total least squares with inequality constraints[J]. Journal of Geodesy,2014,88(8): 805-816. [5] SHEN Yunqiu, YPAM Y J. Solving nonlinear systems of equations with only one nonlinear variable [J]. Journal of Computational & Applied Mathematics, 1990, 30(2): 235-246. [6] HONG J H, ZACH C, FITZGIBBON A. Revisiting the variable projection method for separable nonlinear least squares problems[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR.). Los Alamitos, USA: IEEE Computer Society, 2017: 5939-5947. [7] GAN Min, CHEN C L P, CHEN Guangyong, et al. On some separated algorithms for separable nonlinear least squares problems[J]. IEEE Transactions on Cybernetics, 2018, 48(10): 2866-2874. [8] KAUFMAN L. A variable projection method for solving separable nonlinear least squares problems[J].Bit,1975, 15(1): 49-57. [9] CORRADI C. A note on the solution of separable nonlinear least-squares problems with separable nonlinear equality constraints[J]. SIAM Journal on Numerical Analysis, 1981, 18(6): 1134-1138. [10] DIANNE P O’L, BERT W R. Variable projection for nonlinear least squares problems[J]. Computational Optimization and Applications, 2013, 54(3): 579-593. [11] RUHE A, WEDIN P A. Algorithms for separable nonlinear least squares problems[J].SIAM Review, 1980, 22(3): 318-337. [12] CHEN Guangyong, GAN Min, DING Feng, et al. Modified Gram-Schmidt method based variable projection algorithm for separable nonlinear models[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(8): 2410-2418. [13] FU Zhengqing, GUO Lanlan. Tikhonov regularized variable projection algorithms for separable nonlinear least squares problems[EB/OL].[2019-10-12]. https://doi.org/10.1155/2019/4861708. [14] RICKETT J. The variable projection method for waveform inversion with an unknown source function [J]. Geophysical Prospecting, 2013, 61(4): 874-881. [15] CHUNG J, NAGY J G. An efficient iterative approach for large-scale separable nonlinear inverse problems [J]. SIAM Journal on Scientific Computing, 2010, 31(6): 4654-4674. [16] CHEN G Y, GAN M, CHEN L P, et al. A two-stage estimation algorithm based on variable projection method for GPS positioning[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(11): 2518-2525. [17] FU Zhengqing, LIU Guolin, GUO Lanlan. Sequential quadratic programming method for separable nonlinear least squares estimation and its application[EB/OL]. [2019-10-10]. https://doi.org/10.1155/2019/3087949. [18] DUAN Pengshuo, LIU Genyou, GONG Youliang, et al. The functional gradient description method of space coordinate transformation[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 66-71. [19] 彭荣华,胡祥云,韩波.基于高斯牛顿法的频率域可控源电磁三维反演研究[J].地球物理学报, 2016, 59(9): 3470-3481. PENG Ronghua, HU Xiangyun, HAN Bo. 3D inversion of frequency-domain CSEM data based on Gauss-Newton optimization[J]. Chinese Journal of Geophysics, 2016, 59(9): 3470-3481. [20] 邓兴升, 孙虹虹, 汤仲安. 高斯牛顿迭代法解算非线性Bursa-Wolf模型的精度分析[J]. 测绘科学, 2014, 39(5): 93-95. DENG Xingsheng, SUN Honghong, TANG Zhongan. Precision of Gauss-Newton iterative algorithm for solving nonlinear Bursa-Wolf model[J]. Science of Surveying and Mapping, 2014, 39(5):93-95. [21] GOLUB G H, PEREYRA V. The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate [J]. SIAM Journal on Numerical Analysis, 1973, 10(2): 413-432. [22] MARQUARDT D W. An algorithm for the least-squares estimation of nonlinear parameters [J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441. [23] LEVENBERG K. A method for the solution of certain nonlinear problems in least squares [J]. Quarterly Journal of Applied Mathmatics, 1944, 2(2): 164-168. [24] 甘敏, 彭辉, 陈晓红, 等. RBF-AR模型在非线性时间序列预测中的应用[J]. 系统工程理论与实践, 2010, 30(6): 1055-1061. GAN Min, PENG Hui, CHEN Xiaohong, et al. RBF-AR model-based nonlinear time series prediction[J]. Systems Engineering-Theory & Practice, 2010, 30(6): 1055-1061. [25] GAN Min, LI Hanxiong. An efficient variable projection formulation for separable nonlinear least squares problems[J]. IEEE Transactions on Cybernetics, 2014, 44(5): 707-710. [26] 方兴, 曾文宪, 刘经南, 等. 三维坐标转换的通用整体最小二乘算法[J]. 测绘学报, 2014, 43(11): 1139-1143. FANG Xing, ZENG Wenxian, LIU Jingnan, et al. A general total least squares algorithm for three-dimensional coordinate transformation[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(11): 1139-1143. [27] 陈宇, 白征东. 基于非线性最小二乘算法的空间坐标转换[J]. 大地测量与地球动力学, 2010, 30(2): 129-132. CHEN Yu, BAI Zhengdong. A nonlinear least square algorithm for spatial coordinate transformation[J]. Journal of Geodesy and Geodynamics, 2010, 30(2): 129-132. [28] 钮群. 解非线性的最小二乘法拟合曲线的数值延拓法[J]. 河海大学学报(自然科学版), 2003, 31(5): 597-600. NIU Qun. Numerical continuation method for nonlinear curve fitting by use of least square method[J]. Journal of Hohai University (Natural Sciences), 2003, 31(5): 597-600. |