[1] HAN Houzeng, WANG Jian, WANG Jinling, et al. Performance analysis on carrier phase-based tightly-coupled GPS/BDS/INS integration in GNSS degraded and denied environments[J]. Sensors, 2015, 15(4): 8685-8711. [2] 甘雨, 隋立芬, 刘长建, 等. 自适应抗差Kalman滤波在多天线原始观测值瞬时姿态确定中的应用[J]. 测绘学报, 2015, 44(9): 945-951. GAN Yu, SUI Lifen, LIU Changjian, et al. Instantaneous attitude determination based on original multi-antenna observations using adaptively robust Kalman filtering[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9): 945-951. [3] HAN Houzeng, WANG Jian, WANG Jinling, et al. Reliable partial ambiguity resolution for single-frequency GPS/BDS and INS integration[J]. GPS Solutions, 2017, 21(1): 251-264. [4] DONG Yi, WANG Dingjie, ZHANG Liang, et al. Tightly coupled GNSS/INS integration with robust sequential Kalman filter for accurate vehicular navigation[J]. Sensors, 2020, 20(2): 561. [5] EL-MOWAFY A. Decimetre level mapping using differential phase measurements of GPS handheld receivers[J]. Survey Review, 2005, 38(295): 47-57. [6] WANNINGER L. Carrier-phase inter-frequency biases of GLONASS receivers[J]. Journal of Geodesy, 2012, 86(2): 139-148. [7] LI T, ZHANG H, GAO Z, et al. High-accuracy positioning in urban environments using single-frequency multi-GNSS RTK/MEMS-IMU integration[J]. Remote Sensing, 2018, 10(2): 205. [8] PAZIEWSKI J, WIELGOSZ P. Accounting for Galileo-GPS inter-system biases in precise satellite positioning[J]. Journal of Geodesy, 2015, 89(1): 81-93. [9] ZHANG S, ZHANG K, WU S, et al. Network-based RTK positioning using integrated GPS and GLONAS observations[J]. International Global Navigation Satellite, 2011, 29(8): S252. [10] AL-SHAERY A, ZHANG S, RIZOS C. An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK[J]. GPS Solutions, 2013, 17(2): 165-173. [11] TIAN Yumiao, GE Maorong, NEITZEL F. Particle filter-based estimation of inter-frequency phase bias for real-time GLONASS integer ambiguity resolution[J]. Journal of Geodesy, 2015, 89(11): 1145-1158. [12] LIU Yang, GE Maorong, SHI Chuang, et al. Improving integer ambiguity resolution for GLONASS precise orbit determination[J]. Journal of Geodesy, 2016, 90(8): 715-726. [13] LIU Yanyan, YE Shirong, JIANG Peng, et al. Combining GPS+GLONASS observations to improve the fixing percentage and precision of long baselines with limited data[J]. Advances in Space Research, 2016, 57(5): 1258-1267. [14] ODIJK D, TEUNISSEN P J G. Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution[J]. GPS Solutions, 2013, 17(4): 521-533. [15] TIAN Yumiao, GE Maorong, NEITZEL F. Particle filter-based estimation of inter-frequency phase bias for real-time GLONASS integer ambiguity resolution[J]. Journal of Geodesy, 2015, 89(11): 1145-1158. [16] 隋心. 多GNSS系统间双差模糊度构建与固定理论方法研究[D]. 武汉: 武汉大学, 2017. SUI Xin. Research on the theory and method of inter-system double difference ambiguity forming and fixing for multi-GNSS[D]. Wuhan: Wuhan University, 2017. [17] TIAN Yumiao, GE Maorong, NEITZEL F. Particle filter-based estimation of inter-frequency phase bias for real-time GLONASS integer ambiguity resolution[J]. Journal of Geodesy, 2015, 89(11): 1145-1158. [18] DAI L L, ZHANG Y. Estimation of inter-frequency bias for ambiguity in global navigation satellite system receivers: Europe,EP3430438B1[P]. 2017-02-21. [19] PETOVELLO M. GLONASS inter-frequency biases and ambiguity resolution[J]. Inside GNSS, 2009,4(2): 24-28. [20] CHEN J, XIAO P, ZHANG Y, et al. GPS/GLONASS system bias estimation and application in GPS/GLONASS combined positioning[C]//Proceedings of 2013 Chinese Satellite Navigation Conference. Berlin, Germany: Springer, 2013: 323-333. [21] 杨元喜, 任夏, 许艳. 自适应抗差滤波理论及应用的主要进展[J]. 导航定位学报, 2013, 1(1): 9-15. YANG Yuanxi, REN Xia, XU Yan. Main progress of adaptively robust filter with applications in navigation[J]. Journal of Navigation and Positioning, 2013, 1(1): 9-15. [22] HUANG Yulong, ZHANG Yonggang, WU Zhemin, et al. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices[J]. IEEE Transactions on Automatic Control, 2018, 63(2): 594-601. [23] 高钟毓. 惯性导航系统技术[M]. 北京: 清华大学出版社, 2012. GAO Zhongyu. Inertial navigation system technology[M]. Beijing: Tsinghua University Press, 2012. [24] SHIN E H. Estimation techniques for low-cost inertial navigation[D]. Calgary, Canada: University of Calgary, 2005. [25] PRATT M, BURKE B, MISRA P. Single-epoch integer ambiguity resolution with GPS-GLONASS L1-L2 Data[C]//Proceedings of the 53rd Annual Meeting of The Institute of Navigation. Albuquerque, NM, U.S.: [s.n.], 1997: 691-699. [26] KENNEDY J. Particle swarm optimization[M]//Encyclopedia of Machine Learning. Berlin, Germany: Springer, 2011: 760-766. [27] YANG Yuanxi, XU Tianhe. An adaptive Kalman filter based on sage windowing weights and variance components[J]. Journal of Navigation, 2003, 56(2): 231-240. [28] 严恭敏, 邓瑀. 传统组合导航中的实用Kalman滤波技术评述[J]. 导航定位与授时, 2020, 7(2): 50-64. YAN Gongmin, DENG Yu. Review on practical Kalman filtering techniques in traditional integrated navigation system[J]. Navigation Positioning and Timing, 2020, 7(2): 50-64. [29] YANG Yuanxi. Resilient PNT concept frame[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3): 1-7. |