测绘学报 ›› 2022, Vol. 51 ›› Issue (2): 182-191.doi: 10.11947/j.AGCS.2022.20210144
杜祯强1,2, 柴洪洲2, 向民志2, 章繁2, 黄紫如2, 朱华巍3
收稿日期:
2021-03-31
修回日期:
2021-11-08
发布日期:
2022-02-28
通讯作者:
柴洪洲
E-mail:chaihz1969@163.com
作者简介:
杜祯强(1996-),男,博士生,研究方向为水下UUV协同定位。E-mail:zhenqiangdu_geodesy@outlook.com
基金资助:
DU Zhenqiang1,2, CHAI Hongzhou2, XIANG Minzhi2, ZHANG Fan2, HUANG Ziru2, ZHU Huawei3
Received:
2021-03-31
Revised:
2021-11-08
Published:
2022-02-28
Supported by:
摘要: 无人水下航行器集群协同作业能够扩展单体UUV的感知范围,实现单体UUV无法或难以完成的复杂任务。由于水下环境的复杂性及UUV各传感器存在观测限制、时延等问题,传统分散式Kalman滤波方法所需要的庞大实时通信在实际中难以实现,使得当前UUVs集群协同定位为不严密的解算。本文提出一种以增广信息滤波为核心的UUVs集群协同定位分散式滤波方法,在顾及算法严密性的基础上实现了UUVs分散式协同定位。每个UUV平台根据本地的传感器数据建立自己的状态链,同时广播自己的观测信息,各个平台协同完成信息矩阵的Cholesky修正。基于严密的数理理论证明了所提出的UUVs协同定位的分散式滤波与集中式滤波的一致性,并与传统方法进行对比分析。理论仿真分析表明,较之传统方法单体UUV的观测更新或两个UUV之间的相互观测都会导致UUVs集群全体状态更新,本文方法使得观测更新仅与观测直接涉及的UUV相关,有效地降低了通信载荷,实现观测信息的即插即用,扩展性良好。
中图分类号:
杜祯强, 柴洪洲, 向民志, 章繁, 黄紫如, 朱华巍. UUVs集群协同定位的分散式增广信息滤波方法[J]. 测绘学报, 2022, 51(2): 182-191.
DU Zhenqiang, CHAI Hongzhou, XIANG Minzhi, ZHANG Fan, HUANG Ziru, ZHU Huawei. Decentralized extend information filter for cooperative localization of UUVs[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 182-191.
[1] LEE P M, JUN B H, LIM Y K. Review on underwater navigation system based on range measurements from one reference[C]//Proceedings of OCEANS 2008-MTS/IEEE Kobe Techno-Ocean. Kobe, Japan:IEEE, 2008:1-5. [2] PAULL L, HUANG G, SETO M, et al. Communication-constrained multi-AUV cooperative SLAM[C]//Proceedings of 2015 IEEE international conference on robotics and automation (ICRA). Seattle, WA, USA:IEEE, 2015:509-516. [3] YANG Yuanxi, XU Tianhe, XUE Shuqiang. Progresses and prospects of marine geodetic datum and marine navigation in China[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):16-24. [4] WANG J, XU T, ZHANG B, et al. Underwater acoustic positioning based on the robust zero-difference Kalman filter[J]. Journal of Marine Science and Technology, 2020(7):1-16. [5] KALWA J, PASCOAL A, PERRIER M, et al. Coordination and control of cooperating heterogeneous unmanned systems in uncertain environments[J]. Annex 1, EC Project IST, 2006:35223. [6] SCHOFIELD O, CHANT R, KOHUT J, et al. The growth of the New Jersey shelf observing system for monitoring plumes and blooms on the mid-atlantic continental shelf[C]//Proceedings of Oceans'04 MTS/IEEE Techno-Ocean'04(IEEE Cat. No. 04CH37600). Kobe, Japan::IEEE, 2004(1):127-132. [7] 翟国君, 莫谟涛. 海洋测绘的现状与发展[J]. 测绘通报, 2001(6):7-9. ZHAI Guojun, HUANG Motao, OUYANG Yongzhong, et al. The present and future of hydrographic surveying and charting[J]. Bulletin of Surveying and Mapping, 2001(6):7-9. [8] 杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1):1-8. DOI:10.11947/j.AGCS/2017.20160519. YANG Yuanxi, XU Tianhe, XUE Shuqiang. Progresses and Prospects in Developing Marine Geodetic Datum and Marine Navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1):1-8. DOI:10.11947/j.AGCS/2017.20160519. [9] 赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10):1786-1794. DOI:10.11947/j.AGCS/2017.20170276. ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1786-1794. DOI:10.11947/j.AGCS/2017.20170276. [10] TAN Y T, GAO R, CHITRE M. Cooperative path planning for range-only localization using a single moving beacon[J]. IEEE Journal of Oceanic Engineering, 2014, 39(2):371-385. [11] HUANG Y, ZHANG Y, XU B, et al. A new adaptive extended Kalman filter for cooperative localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 54(1):353-368. [12] VAGANAY J, LEONARD J J, CURCIO J A, et al. Experimental validation of the moving long base-line navigation concept[C]//Proceedings of 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No. 04CH37578). Sebasco, ME, USA:IEEE, 2004:59-65. [13] BAHR A, LEONARD J J, FALLON M F. Cooperative localization for autonomous underwater vehicles[J]. The International Journal of Robotics Research, 2009, 28(6):714-728. [14] LIU M, SHEN J, ZHANG J, et al. A cooperative localization method of UUV based on unscented Kalman filter[J]. Torpedo Technology, 2011, 19(3):205-208. [15] DONG P, CHENG J, LIU L, et al. INS/USBL nonlinear integrated navigation method based on relative information observation[J]. Systems Engineering and Electronic Technology, 2019, 41:402-408. [16] LI Q, NAQVI S M, NEASHAM J, et al. Robust cooperative navigation for AUVs using the student's T distribution[C]//Proceedings of 2017 Sensor Signal Processing for Defence Conference (SSPD). Looidon, UK:IEEE, 2017:1-5. [17] 杨元喜. 自适应动态导航定位[M]. 北京:测绘出版社, 2006. YANG Yuanxi. Adaptive dynamic navigation and positioning[M]. Beijing:Surveying and Mapping Press, 2006. [18] 高为广, 杨元喜, 张双成. 基于当前加速度模型的抗差自适应Kalman滤波[J].测绘学报,2006, 35(1):15-18. GAO Weiguang, YANG Yuanxi, ZHANG Shuangcheng. Adaptive robust Kalman filtering based on the current statistical model[J]. Acta Geodaetica et Cartographica Sinica,2006, 35(1):15-18. [19] SUN C, ZHANG Y, WANG G, et al. A maximum correntropy divided difference filter for cooperative localization[J]. IEEE Access, 2018(6):41720-41727. [20] HARRIS Z J, WHITCOMB L L. Preliminary evaluation of cooperative navigation of underwater vehicles without a DVL utilizing a dynamic process model[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia:IEEE, 2018:4897-4904. [21] 尹潇, 柴洪洲, 向民志, 等. 附加运动学约束的BDS抗差UKF导航算法[J]. 测绘学报, 2020, 49(11):1399-1406. YIN Xiao, CHAI Hongzhou, XIANG Minzhi, et al. Robust UKF algorithm with motion constraint in BDS navigation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11):1399-1406. [22] ZHAO S, WANG Z, HE K, et al. Investigation on underwater positioning stochastic model based on acoustic ray incidence angle[J]. Applied Ocean Research, 2018, 77:69-77. [23] WANG Z, ZHAO S, JI S, et al. Real-time stochastic model for precise underwater positioning[J]. Applied Acoustics, 2019(150):36-43. [24] XU B, RAZZAQI A A, YALONG L. Cooperative localisation of AUVs based on huber-based robust algorithm and adaptive noise estimation[J]. The Journal of Navigation, 2019, 72(4):875-893. [25] MU H, BAILEY T, THOMPSON P, et al. Decentralised solutions to the cooperative multi-platform navigation problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2):1433-1449. |
[1] | 袁俊军, 李凯, 唐成盼, 周善石, 胡小工, 曹建峰. 面向精密位置服务的低轨卫星轨道预报精度分析[J]. 测绘学报, 2022, 51(5): 640-647. |
[2] | 杨凯淳, 吕志平, 李林阳, 邝英才, 许炜, 郑茜. 附加历元间约束的滑动窗单频实时精密单点定位算法[J]. 测绘学报, 2022, 51(5): 648-657. |
[3] | 朱锋. GNSS/SINS/视觉多传感器融合的精密定位定姿方法与关键技术[J]. 测绘学报, 2022, 51(5): 782-782. |
[4] | 刘斌. 基于ICA的垂向GNSS坐标时间序列时空分析建模及反演的理论与方法[J]. 测绘学报, 2022, 51(5): 783-783. |
[5] | 黄刚. 基于深度学习的移动激光点云数据自动分类方法研究[J]. 测绘学报, 2022, 51(5): 786-786. |
[6] | 柴大帅. 多星座GNSS/INS组合导航理论与方法研究[J]. 测绘学报, 2022, 51(5): 787-787. |
[7] | 柳根. 多频多模PPP非组合模糊度固定方法和关键技术研究[J]. 测绘学报, 2020, 49(6): 798-798. |
[8] | 陈俊宇. 利用空间目标监测数据的大气质量密度模型校正[J]. 测绘学报, 2020, 49(6): 800-800. |
[9] | 严丽. BDS/GPS融合精密定位理论与算法研究[J]. 测绘学报, 2020, 49(6): 803-803. |
[10] | 李林阳. 大规模全球GNSS网云计算方法与应用[J]. 测绘学报, 2020, 49(6): 804-804. |
[11] | 白正伟, 张勤, 黄观文, 景策, 王家兴. “轻终端+行业云”的实时北斗滑坡监测技术[J]. 测绘学报, 2019, 48(11): 1424-1429. |
[12] | 刘备, 王勇, 娄泽生, 占伟. CMONOC观测约束下的中国大陆地区MODIS PWV校正[J]. 测绘学报, 2019, 48(10): 1207-1215. |
[13] | 高云鹏, 任天鹏, 杜兰, 陈思睿, 张中凯. CE-5器间分离的同波束干涉测量的准实时监测法[J]. 测绘学报, 2019, 48(10): 1216-1224. |
[14] | 韩松辉, 张国超, 张宁, 朱建青. AR模型中AO类异常值探测及其在GPS卫星钟差预报中的应用[J]. 测绘学报, 2019, 48(10): 1225-1235. |
[15] | 邵璠, 王小亚, 何冰, 张晶. 模糊聚类定权法对SLR定轨精度的影响[J]. 测绘学报, 2019, 48(10): 1236-1243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||