[1] 卞鸿巍, 刘文超, 温朝江, 等.极区导航[M]. 北京:科学出版社, 2020. BIAN Hongwei, LIU Wenchao, WEN Chaojiang, et al. Polar navigation[M]. Beijing:Science Press, 2020. [2] 赵玉新, 奔粤阳, 李倩. 极区航海用惯性导航系统综述[J]. 导航定位与授时, 2020, 7(2):1-10. ZHAO Yuxin, BEN Yueyang, LI Qian. Inertial navigation systems for polar marine navigation:a survey[J]. Navigation Positioning and Timing, 2020, 7(2):1-10. [3] PATUREL Y, LACAMBRE J B, PATIN F, et al. Inertial navigation at high latitude:trials and test results[C]//Proceedings of 2015 OCEANS. Washington D C, USA:IEEE, 2015. [4] 李忠美, 边少锋, 金立新, 等. 极区不分带高斯投影的正反解表达式[J]. 测绘学报, 2017, 46(6):780-788. DOI:10.11947/j.AGCS.2017.20170009. LI Zhongmei, BIAN Shaofeng, JIN Lixin, et al. Forward and inverse expressions of polar Gauss projection without zoning limitations[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6):780-788. DOI:10.11947/j.AGCS.2017.20170009. [5] 刘文超,卞鸿巍.基于极球面投影的极区格网等角航线[J].测绘学报,2019,48(1):18-23.DOI:10.11947/j.AGCS.2019.20180134. LIU Wenchao, BIAN Hongwei. Polar grid rumble route based on polar stereographic projection[J]. Acta Geodaetica et Cartographica Sinica, 2019,48(1):18-23. DOI:10.11947/j.AGCS.2019.20180134. [6] 张海峰, 张礼伟, 王兴岭, 等. 捷联惯导系统极区导航算法优化设计及误差特性分析[J]. 中国惯性技术学报, 2015, 23(6):701-706. ZHANG Haifeng, ZHANG Liwei, WANG Xingling, et al. Optimization design and error analysis of strapdown inertial navigation system mechanization in polar region[J]. Journal of Chinese Inertial Technology, 2015, 23(6):701-706. [7] KANG Y, ZHAO L, CHENG J, et al. Azimuth error suppression method based on the rotation modulation and acoustic navigation assistance for polar grid SINS[C]//Proceedings of 2020 China Satellite Navigation Conference. Singapore:Springer,2020. [8] KANG Y, ZHAO L, CHENG J, et al. A novel grid SINS/DVL integrated navigation algorithm for marine application[J]. Sensors (Basel), 2018,18(2):364. [9] 刘文超, 卞鸿巍, 王荣颖, 等. 惯性导航系统极区导航参数解算方法[J]. 上海交通大学学报, 2014, 48(4):538-543. LIU Wenchao, BIAN Hongwei, WANG Rongying, et al. A calculating method of polar navigation parameters for inertial navigation system[J]. Journal of Shanghai Jiao Tong University, 2014, 48(4):538-543. [10] QIN Fangjun, CHANG Lubin, LI An. Improved transversal polar navigation mechanism for strapdown INS using ellipsoidal earth model[J]. Journal of Navigation. 2018(71):1-17. DOI:10.1017/S0373463318000425. [11] 李倩, 孙枫, 奔粤阳, 等. 基于横坐标系的捷联惯导系统极区导航方法[J]. 中国惯性技术学报, 2014, 22(3):288-295. LI Qian, SUN Feng, BEN Yueyang, et al. Transversal strapdown INS and damping design in polar region[J]. Journal of Chinese Inertial Technology, 2014, 22(3):288-295. [12] 徐晓苏, 豆嫚. 基于横向地理坐标系的极区惯性导航方法研究[J]. 华中科技大学学报(自然科学版), 2014, 42(12):116-121. XU Xiaosu, DOU Man. Inertial navigation algorithm in polar regions based on transverse geographic coordinate system[J]. Journal of Huazhong University of Science and Tecnology(Natural Science Edition), 2014, 42(12):116-121. [13] 卞鸿巍, 林秀秀, 王荣颖, 等. 基于统一横向坐标系的极区地球椭球模型导航方法[J]. 中国惯性技术学报, 2018, 26(5):579-584. BIAN Hongwei, LIN Xiuxiu, WANG Rongying, et al. Ellipsoid model navigation method based on unified transverse coordinate system in polar region[J]. Journal of Chinese Inertial Technology, 2018, 26(5):579-584. [14] 张甲甲, 卞鸿巍, 王荣颖, 等. 基于地球坐标系的SINS/GNSS极区组合导航算法[J]. 导航定位与授时, 2020, 7(4):83-88. ZHANG Jiajia, BIAN Hongwei, WANG Rongying, et al. SINS/GNSS integrated navigation algorithm based on the earth coordinate frame in polar region[J]. Navigation Positioning and Timing, 2020, 7(4):83-88. [15] 张广栋, 严恭敏, 翁浚, 等. 极区飞行法向量惯性导航算法原理[J]. 中国惯性技术学报, 2017, 25(5):606-610,617. ZHANG Guangdong, YAN Gongmin, WENG Jun, et al. N-vector inertial navigation mechanization algorithm for transpolar aircraft[J]. Journal of Chinese Inertial Technology, 2017, 25(5):606-610,617. [16] 程海彬, 鲁浩, 徐剑芸. 一种基于凝固地理系的捷联惯导极区导航算法[J]. 中国空间科学技术, 2020, 40(2):35-41. CHENG Haibin, LU Hao, XU Jianyun. A polar navigation algorithm of strapdown inertial navigation system under frozen geography frame[J]. Chinese Space Science and Technology, 2020, 40(2):35-41. [17] 王荣颖, 刘文超, 卞鸿巍, 等. 惯导系统极区导航性能仿真分析[J]. 海军工程大学学报, 2014, 26(3):75-79. WANG Rongying, LIU Wenchao, BIAN Hongwei, et al. Simulation analysis of INS polar navigation performance[J]. Journal of Naval University of Engineering, 2014, 26(3):75-79. [18] 李琳, 张海峰. 虚拟极区技术在惯性系统极区导航中的应用研究[C]//2016年光学陀螺及系统技术发展与应用研讨会, 九江:[s.n.], 2016. LI Lin, ZHANG Haifeng. Study on application of virtual polar technique in inertial navigation systems polar sailing[C]//Proceedings of 2016 Optical Gyroscope and System Technology Development and Application Seminar. JiuJiang, China:[s.n.], 2016. [19] ZHOU Qi, ZHAO Mengmeg, TIAN Yu. Verification of polar navigation elements based on fictions pole of earth[C]//Proceedings of 2016 IEEE Chinese Guidance Navigation and Control Conference. Nanjing, China:[s.n.], 2016:6. [20] LEI Jing, WU Wenqi. Simulation and algorithm verification for polar region inertial navigation based on low latitude test sailing[C]//Proceedings of 2016 AsiaSim/SCS AutumnSim. Beijing, China:[s.n.],2016. [21] YAO Yiqing, XU Xiaosu, LI Yao, et al. Transverse navigation under the ellipsoidal earth model and its performance in both polar and non-polar areas[J]. The Journal of Navigation, 2016(69):335-352. [22] WU Feng, SHAO Tianyi, GU Cong, et al. Virtual polar region method based on the earth's transverse ellipsoid model[J]. Mathematical Problems in Engineering, 2021:6620068. DOI:10.11551202116620068. [23] QIN Fangjun, CHANG Lubin, TONG Lin, et al. Transverse polar navigation method based on virtual sphere model[J]. Journal of Chinese Inertial Technology, 2018,26(5):571-578. [24] 文者,卞鸿巍,马恒,等.中低纬度下惯导极区性能模拟测试方法[J].系统工程与电子技术. 2021, 43(9):2620-2627. WEN Zhe, BIAN Hongwei, MA Heng, et al. Simulation test method of inertial navigation polar performance at middle and low latitudes[J]. System Engineering and Electronics. 2021, 43(9):2620-2627. [25] 林秀秀,卞鸿巍,马恒,等. 极区惯导编排中地球近似模型的适用性分析[J].测绘学报. 2019, 48(3):303-312. DOI:10.11947/j.AGCS.2019.20180073. LIN Xiuxiu, BIAN Hongwei, MA Heng, et al. Applicability analysis of the approximate model of the Earth with the arrangement of INS in polar region[J]. Acta Geodaetica et Cartographica Sinica. 2019, 48(3):303-312. DOI:10.11947/j.AGCS.2019.20180073. |