测绘学报 ›› 2022, Vol. 51 ›› Issue (2): 301-311.doi: 10.11947/j.AGCS.2022.20210247

• 地图学与地理信息 • 上一篇    下一篇

顾及空间分布与注记相关性的点要素注记配置算法

曹闻1, 彭斐琳1, 童晓冲2, 戴浩然1, 张勇3   

  1. 1. 郑州大学地球科学与技术学院, 河南 郑州 450000;
    2. 信息工程大学地理空间信息学院, 河南 郑州 450001;
    3. 郑州众合景轩信息技术有限公司, 河南 郑州 450000
  • 收稿日期:2021-05-21 修回日期:2021-11-11 发布日期:2022-02-28
  • 作者简介:曹闻(1979-),男,博士,副教授,研究方向为时空大数据分析与可视化研究。E-mail:zzdx_edifier@zzu.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFB0505304)

A point-feature label placement algorithm considering spatial distribution and label correlation

CAO Wen1, PENG Feilin1, TONG Xiaochong2, DAI Haoran1, ZHANG Yong3   

  1. 1. School of Geoscience and Technology, Zhengzhou University, Zhengzhou 450000, China;
    2. School of Geospatial Information, University of Information Engineering, Zhengzhou 450001, China;
    3. Zhengzhou Zhonghe Jing Xuan Information Technology Co., Ltd., Zhengzhou 450000, China
  • Received:2021-05-21 Revised:2021-11-11 Published:2022-02-28
  • Supported by:
    The National Key Research and Development Program of China (No. 2018YFB0505304)

摘要: 点状要素注记自动配置问题是数据可视化研究的难点之一。稠密型点状要素注记之间往往存在着较大的相关性和冲突性,从而导致注记效率低下及配置结果不合理的问题。本文通过充分挖掘稠密型点状要素的空间分布特征和注记相关性,提出了一种顾及空间分布与注记相关性的点要素注记配置算法。首先,充分挖掘点要素的局部空间分布特征和注记间的相关性构建注记关联度模型;其次,利用基于注记关联度模型的空间聚类算法对其整体空间分布特征进行描述和分析,将单一数据集划分为若干个独立的子数据集,以消除整体求解中独立数据集产生的干扰性和模糊性;最后,利用点要素的局部空间分布特征和注记相关性构建基于增序注记关联度模型的注记次序规则,并采用多层次元启发算法求解注记配置的近似最优解。试验结果表明:在5%~40%注记密度下的点要素注记配置,新算法较传统元启发式算法的求解效率提高10.41%~28.92%,注记质量评价函数值下降5.5~35.9,有效提升了点要素注记配置的效率和质量。

关键词: 点要素注记配置, 注记关联度模型, 注记空间分布, 注记相关性, 元启发式算法

Abstract: The problem of Point-Feature Label Placement is one of the difficulties in data visualization. Large correlation and overlap among the labels of dense point features lead to the low efficiency of labeling and unreasonable labeling results. Fully mining the local spatial distribution characteristics and label correlation of dense point features, this paper proposes an automatic point feature label placement algorithm considering spatial distribution and label correlation of point features. Firstly, we build a label association model by mining the spatial distribution characteristics of point features and the label correlation; Secondly, the spatial clustering algorithm based on label association model is used to describe and analyze its global spatial distribution characteristics, which divides a single dataset into several independent sub-datasets to eliminate the interference and ambiguity among independent datasets in the overall solution; Finally, the labeling order rules based on the ascending order of label association model are constructed by using the local spatial distribution characteristics of point feature and the label correlation, which is used to guide the solution of the approximate optimal solution of label placement in the multi-hierarchy metaheuristic algorithm. The experimental results show that:when the label density range from 5% to 40%, the efficiency of the new algorithm is improved by 10.41%~28.92%, and the label quality evaluation value has dropped by 5.5~35.9, which effectively improves efficiency and quality of label placement.

Key words: point-feature label placement, label association model, label spatial distribution, label correlation, metaheuristic algorithm

中图分类号: