[1] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system [J]. Journal of Geophysical Research Atmospheres, 1992, 97(D14): 15787-15801. [2] BEVIS M, BUSINGER S, CHISWELL S, et al. GPS meteorology: mapping zenith wet delays onto precipitable water [J]. Journal of Applied Meteorology, 1994, 33(3): 379-386. [3] DUAN J P, BEVIS M, FANG P, et al. GPS meteorology: direct estimation of the absolute value of precipitable water [J]. Journal of Applied Meteorology, 1996, 35: 830-838. [4] 赵庆志, 姚宜斌, 姚顽强. 顾及层析区域外测站的GNSS水汽层析建模方法[J]. 测绘学报, 2021, 50(3): 285-294. DOI: 10.11947/j.AGCS.2021.20200111. ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. A method to establish the tomography model considering the data of GNSS stations outside the research area [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 285-294. DOI: 10.11947/j.AGCS.2021.20200111. [5] YANG F, GUO J, ZHANG C, et al. A regional zenith tropospheric delay (ZTD) model based on GPT3 and ANN [J]. Remote Sensing. 2021, 13(5): 838. [6] ASKNE J, NORDIUS H. Estimation of tropospheric delay for microwaves from surface weather data [J]. Radio Science, 1987, 22: 379-386. [7] YANG F, GUO J, MENG X, et al. An improved weighted mean temperature (Tm) model based on GPT2w model with Tm Lapse rate [J]. GPS Solutions, 2020, 24(46): 1-13. [8] ZHANG H, YUAN Y, LI W, et al. GPS PPP-derived precipitable water vapor retrieval based on Tm/Ps from multiple sources of meteorological data sets in China [J]. Journal of Geophysical Research Atmosphere, 2017, 122(8): 4165-4183. DOI:10.1002/2016JD026000. [9] EMARDSON T R, DERKS H J. On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere [J]. Meteorological Applications, 2000, 7: 61-68. [10] LIOU YA, TENG YT, VAN HT, et al. Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes [J]. Journal of Applied Meteorology. 2001, 40(1): 5-15. [11] LI J, MAO J. The approach to remote sensing of water vapor based on GPS and linear regression Tm in eastern region of China [J]. Journal of Meteorological Research, 1998, 12(4): 450-458. [12] 王晓英, 戴仔强, 曹云昌, 等. 中国地区地基GPS加权平均温度Tm统计分析[J]. 武汉大学学报(信息科学版), 2011, 36(4): 412-416. WANG Xiaoying, DAI Ziqiang, CAO Yunchang, et al. Weighted mean temperature Tm statistical analysis in ground-based GPS in China [J]. Geomatics and Information Science of Wuhan University. 2011, 36(4), 412-416. [13] WANG S, XU T, NIE W, et al. Establishment of atmospheric weighted mean temperature model in the polar regions [J]. Advances in Space Research, 2019, 65(1): 518-528. [14] MAGHRABI A, ALOTHMAN A, ALMUTAIRI M, et al. Variations and modeling of the atmospheric weighted mean temperature for ground-based GNSS applications: central Arabian Peninsula [J]. Advances in Space Research, 2018, 62(9): 2431-2442. [15] YAO Y, ZHU S, YUE S. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere [J]. Journal of Geodesy, 2012, 86(12): 1125-1135. [16] YAO Y, ZHANG B, YUE S, et al. Global empirical model for mapping zenith wet delays onto precipitable water[J]. Journal of Geodesy, 2013, 87: 439-448. [17] YAO Y, XU C, ZHANG B, et al. GTm-Ⅲ: a new global empirical model for mapping zenith wet delays onto precipitable water vapour [J]. Geophysical Journal International, 2014, 197: 202-212. [18] HE C, YAO Y, ZHAO D, et al. GWMT global atmospheric weighted mean temperature models: development and refinement [C]//Proceedings of 2013 China Satellite Navigation Conference. Wuhan, China:[s.n.], 2013. [19] CHEN P, YAO W. GTm_X: a new version global weighted mean temperature model [C] //Proceedings of 2015 China Satellite Navigation Conference. Xi’an, China:[s.n.], 2015. [20] HE C, WU S, WANG X, et al. A new voxel-based model for the determination of atmospheric weighted mean temperature in GPS atmospheric sounding [J]. Atmospheric Measurement Techniques, 2017, 10(6): 3651-3660. [21] HUANG L, JIANG W, LIU L, et al. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor [J]. Journal of Geodesy, 2019, 93: 159-176. [22] SUN Z, ZHANG B, YAO Y. A global model for estimating tropospheric delay and weighted mean temperature developed with atmospheric reanalysis data from 1979 to 2017 [J]. Remote Sensing, 2019, 11(16):1893. [23] LANDSKRON D, BOHM J. VMF3/GPT3: refined discrete and empirical troposphere mapping functions [J]. Journal of Geodesy, 2018, 92(4): 349-360. [24] LEANDRO R F, LANGLEY R B, SANTOS M C. UNB3m_pack: a neutral atmosphere delay package for radiometric space techniques [J]. GPS Solutions, 2008, 12: 65-70. [25] SUN Z, ZHANG B, YAO Y. Improving the estimation of weighted mean temperature in China using machine learning methods [J]. Remote Sensing, 2021, 13(5):1016. [26] LONG F, HU W, DONG Y, et al. Neural network-based models for estimating weighted mean temperature in China and adjacent areas [J]. Atmosphere, 2021, 12(2):169. [27] DING M. A second generation of the neural network model for predicting weighted mean temperature [J]. GPS Solutions, 2020, 24: 61. [28] DAVIS J, HERRING T, SHAPIRO I, et al. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length [J]. Radio Science, 1985, 20: 1593-1607. [29] YAO Y, SUN Z, XU C. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 1-11. |